
University

of Southern

California

Collected Papers
of the Soar/IFOR Project, Spring 1995

W. Lewis Johnson, Randolph M. Jones, Frank V. Koss,
John E. Laird, Jill F. Lehman, Paul E. Nielsen,

Paul S. Rosenbloom, Robert Rubinoff, Karl B. Schwamb,
Milind Tambe, Julie Van Dyke, Michael van Lent, and Robert E. Wray III

USC/Information Sciences Institute, University of Michigan
and

Carnegie Mellon University

June 1995

ISI/SR-95-406

19960605 018
DISTRIBUTION STATEMENT A

Approved tor public releases
Distribution Unlimited

DTCC QUALITY INSPECTED 1

INFORMATION
SCIENCES

INSTITUTE
sfHJ, 3101822-1511

4676 Admiralty Way/Marina del ReylCalifornia 90292-6695

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE FORM APPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing Instructions, searching exiting data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-01881.
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1995
4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Research Report

Collected Papers of the Soar / IFOR Project, Spring 1995

6.AUTHOR(S)

W. Lewis Johnson, Randolph M. Jones, Frank V. Koss, John E. Laird, Jill F. Lehman, Paul
E. Nielsen, Paul S. Rosenbloom, Robert Rubinoff, Karl B. Schwamb, Milind Tambe, Julie
Van Dyke, Michael van Lent, and Robert E. Wray JU

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

5. FUNDING NUMBERS

N00014-92-K-2015
and
N66001-95-C-6013

8. PERFORMING ORGANEATON
REPORT NUMBER

ISI/SR-95-406

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS{ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARPA/ASTO
3701 N. Fairfax Drive
Arlington, VA 22203-1714

Naval Research Laboratory
4555 Overlook Ave., SW
Washington, D.C 20375-5000

NRaD/NCCOSC
53560 Hull St.
San Diego, CA 92152

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCIJ^SIFJED/LiNLIMrrED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents
for tactical air simulation. The Soar/IFOR research project exists at three sites, the University of
Michigan, the University of Southern California, and Carnegie Mellon University. The ultimate goal of
this project is to develop automated pilots whose behavior in simulated engagements is indistinguishable
from that of human pilots. Our work has concentrated on developing agents for a variety of air-to-air and
air-to-ground missions.
This technical report is a collection of research papers that have been generated from this project between
Spring 1994 and Spring 1995. The research covered in these papers spans a wide spectrum of issues in
agent development such as learning, planning, coordination, command and control, natural language pro-
cessing, agent tracking, and piloting rotary wing aircraft.

14. SUBJECT TERMS

Battlefield simulation, intelligent agents, intelligent computer-generated forces,
interactive simulation, machine learning, military, Soar, tactical air simulation

15. NUMBER OF PAGES

78

16. PRICE CODE

17. SECURITY CLASS1FICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

 GENERAL INSTRUCTIONS FOR COMPLETING SF298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE -Program

Element

PR - Project
TA -Task
WU - Work Unit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised/include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

- Leave blank.
- Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

- Leave blank.
- Leave blank.

Block 13. Abstract Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Table of Contents

Preface 111

1. Simulated Intelligent Forces for Air: The Soar/IFOR Project 1995. 1
John E. Laird, W. Lewis Johnson, Randolph M. Jones, Frank V. Koss, Jill F. Lehman,
PaulE. Nielsen, Paul S. Rosenbloom, Robert Rubinoff, KarlB. Schwamb, Milind Tambe,
Julie Van Dyke, Michael van Lent, and Robert E. Wray III

2. Using Machine Learning to Extend Autonomous Agent Capabilities 12
W. Lewis Johnson, and Milind Tambe

3. Planning in the Tactical Air Domain. 19
Randolph M. Jones, Robert E. Wray III, Michael van Lent, and John E. Laird

4. Multiagent Coordination in Distributed Interactive Battlefield Simulations 25
John E. Laird, Randolph M. Jones, and Paul E. Nielsen

5. Natural Language Processing for IFORs: Comprehension and Generation in the
Air Combat Domain 33
//// F. Lehman, Julie Van Dyke, and Robert Rubinoff

6. Intelligent Computer Generated Forces for Command and Control 42
Paul E. Nielsen

7. Recursive Agent and Agent-group Tracking in a Real-time Dynamic Environment 51
Milind Tambe

8. RESC: An approach for real-time, dynamic agent tracking 59
Milind Tambe and Paul S. Rosenbloom

9. Building Intelligent Pilots for Simulated Rotary Wing Aircraft 67
Milind Tambe, Karl Schwamb, and Paul S. Rosenbloom

Preface

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents
for tactical air simulation. The Soar/IFOR research project exists at three sites, the University of
Michigan, the University of Southern California, and Carnegie Mellon University. The ultimate goal of
this project is to develop automated pilots whose behavior in simulated engagements is indistinguishable
from that of human pilots. Our work has concentrated on developing agents for a variety of air-to-air
and air-to-ground missions.

This technical report is a collection of the research papers that have been generated from this project
between Spring 1994 and Spring 1995. Earlier papers were published as "Collected papers of the
Soar/IFOR project, Spring 1994", Johnson, W. L, et al., Technical Reports CSE-TR-207-94 from the
Department of Electrical Engineering and Computer Science, University of Michigan; IS1/SR-94-379
from the University of Southern California Information Sciences Institute; and CMU-CS-94-134 from
Carnegie Mellon University. The best overview of this project was published separately as
"Intelligent Agents for Interactive Simulation Environments", by Tambe, M., Johnson, W. L., Jones, R.
M., Koss, F., Laird, J. E., Rosenbloom, P. S. and Schwamb, K., in AI Magazine, 16(1), 1995.

The research covered in these papers spans a wide spectrum of issues in agent development such as
learning [2], planning [3], coordination, and command and control [4,6], natural language processing
[5], agent tracking [7,8,9] and piloting rotary wing aircraft [10].

The papers are organized by having the overview paper first followed by all of the other papers in
alphabetic order by author.

1. Laird, J. E., Johnson, W. L., Jones, R. M., Koss, F., Lehman, J. F., Nielsen, P. E., Rosenbloom, P. S.,
Rubinoff, R., Schwamb, K. Tambe, M.,Van Dyke, J., van Lent, M. and Wray, R. E.
Simulated Intelligent Forces for Air The Soar/IFOR Project 1995. Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral Representation. Orlando, FL. OD. 27-36.
May 1995.

2. Johnson, W. L. and Tambe, M.
Using Machine Learning to Extend Autonomous Agent Capabilities. The Proceedings of the 1995
Summer Computer Simulation Conference, Society of Computer Simulation, 1995.

3. Jones, R. M., Wray, R. E., van Lent, M., and Laird, J. E.
Planning in the Tactical Air Domain. In Planning and learning: On to real applications, papers from
the 1994 AAAI Fall symposium (Technical Report No. FS-94-01). Menlo Park, CA: AAAI Press.

4 Laird, J. E., Jones, R. M. and Nielsen, P. E.
Multiagent Coordination in Distributed Interactive Battlefield Simulations, Abstract published in
Proceedings of the International Conference on Multi-agent systems (ICMAS). June, 1995.

5. Lehman, J. F., Van Dyke, J., and Rubinoff, R.
Natural Language Processing for IFORs: Comprehension and Generation in the Air Combat Domain.
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral Representation.
Orlando, FL. pp. 115-123, May 1995.

6. Nielsen, P.
Intelligent Computer Generated Forces for Command and Control. Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral Representation. Orlando, FL. pp. 211-
218, May 1995.

7. Tambe, M.
Recursive Agent and Agent-group Tracking in a Real-time Dynamic Environment. In Proceedings of
the International Conference on Multi-agent systems (ICMAS). June, 1995.

8. Tambe, M. and Rosenbloom, P. S.
RESC: An Approach for Real-time, Dynamic Agent Tracking. In Proceedings of the International
Joint Conference on Artificial Intelligence (JJCAI), August, 1995.

9. Tambe M., Schwamb, K., and Rosenbloom, P. S.
Building Intelligent Pilots for Simulated Rotary Wing aircraft. In Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral Representation, pp. 39-44, May, 1995.

This technical report is being published concurrently at the University of Michigan (CSE-TR-242-95),
the University of Southern California Information Sciences Institue (ISI/SR-95-406), and Carnegie
Mellon University (CMU-CS-95-165).

This research was supported under contract N00014-92-K-2015 from the Advanced Systems
Technology Office of the Advanced Research Projects Agency and the Naval Research Laboratory, and
contract N66001-95-C-6013 from the Advanced Systems Technology Office of the Advanced Research
Projects Agency and the Naval Command and Ocean Surveillance Center, RDT&E division.

Simulated Intelligent Forces For Air:
The Soar/IFOR Project 1995

John E. Laird,1 W. Lewis Johnson,2 Randolph M. Jones,1 Frank Koss,1 Jill F. Lehman,3

Paul E. Nielsen,1 Paul S. Rosenbloom,2 Robert Rubinoff,3 Karl Schwamb,2

Milind Tambe,2 Julie Van Dyke,3 Michael van Lent,1 and Robert E. Wray, HI1

1 Artificial Intelligence Laboratory
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48109-2110

laird@umich.edu

2Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

rosenbloom@isi.edu

3 Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
jef@cs.cmu.edu

1 Abstract

For the last three years, the Soar/IFOR
group has been developing intelligent forces for
distributed interactive simulation environments.
Since early 1994, our efforts have been focused on
developing computer generated forces for air mis-
sions including both fixed wing and rotary wing
aircraft. This paper reviews the current state of
the Soar/IFOR project and discusses the results
of a preliminary trial of our agents in STOW-E,
a precursor to STOW-97.

2 Introduction

The goal of the Soar/IFOR project is to de-
velop human-like synthetic agents for populating
interactive distributed simulation environments.
In contrast to the standard semi-automated forces
(SAF) approach, where it is assumed that some
higher-level authority, such as a human or a com-
puterized command force (CFOR), will be re-
sponsible for all decisions requiring judgement,
our approach is to endow all entities with knowl-
edge and decision making abilities similar to those
found in humans performing similar tasks. Our
hypothesis, confirmed in part by our participation
in a large scale simulated exercise called STOW-
E, is that building intelligent forces provides a
payoff in terms of increasing the fidelity of the
agents' behavior, while decreasing the complex-
ity of commanding the agents.

From 1992 through early 1994, our efforts were
focussed on research and development for be-

yond visual range air-to-air combat leading to
the creation of TacAir-Soar [Jones et at, 1993;
Rosenbloom et al., 1994; Tambe et o/., 1995a].
In early 1994, we broadened our horizon signif-
icantly, and we are now working on developing
automated synthetic pilots for the majority of air
missions flown in the U.S. military. The var-
ious missions include air-to-air (defensive com-
bat air patrols, sweeps), air-to-ground (close air
support, interdiction, strategic attack), air-to-
surface, rotary wing (anti-armor), as well as some
support missions (refueling, resupply, etc). We
are also developing additional agents, such as air
and ground controllers, that communicate with
the agents flying in planes and helicopters during
their missions. We will refer to all the agents
being developed by the Soar/IFOR project as
Air-IFOR agents, while TacAir-Soar refers to the
agents that fly tactical fixed wing aircraft.

During the last year, we have made progress
on many of these missions, and in this paper we
will review all aspects of the existing Soar/IFOR
agents, including: the interaction between Air-
IFOR agents and DIS, the design of Air-IFOR
agents, their capabilities, the interactions be-
tween multiple Air-IFOR agents, and the partic-
ipation of Air-IFOR agents in STOW-E.

3 Interaction with DIS

Since the inception of the Soar/IFOR project,
our goal has been to create an abstract interface
layer between Air-IFOR agents and the underly-
ing simulation (DIS) environment. We call this

the "virtual cockpit" abstraction, meaning that
Air-IFOR agents should have an interface that
supports the types of interactions a pilot has in
the cockpit of a plane or helicopter (Schwamb et
al., 1994]. Thus, Air-IFOR agents are isolated
from the details of the underlying simulation envi-
ronment, network protocol, plane dynamics, sen-
sor simulation, etc. Currently, we use ModSAF
[Calder et al., 1993] as the underlying software
which provides connectivity to the DIS environ-
ment as well as simulations of the vehicle dynam-
ics, sensors, weapons, and communication (radio)
systems. To support the virtual cockpit, we have
added C code, which defines a Soar/ModSAF In-
terface (SMI){Schwamb et al., 1994]. The SMI
makes all of the appropriate calls to the underly-
ing ModSAF functions so that Air-IFOR agents
get access to the appropriate sensor and weapons
systems. The SMI does not use ModSAF tasks
or taskframes, but instead relies on lower level
functions which gives Air-IFOR agents finer-grain
control of their own behavior.

Air-IFOR agents are built within the Soar ar-
chitecture [Laird et al., 1987; Laird and Rosen-
bloom, 1994; Rosenbloom et al., 1991; Rosen-
bloom et al., 1993]. Soar, the SML, and Mod-
SAF are integrated (within the same Unix pro-
cess) so that each Soar/IFOR agent gets "ticked"
during the simulation cycle. Using this arrange-
ment, we can run multiple, independent agents
on a single Unix workstation, as well as having
agents on many different machines — although a
single agent is not distributed across multiple ma-
chines. Air-IFOR agents do not share data except
through explicit communication using simulated
radios.

As part of building the SMI, we have ex-
tended the standard suite of ModSAF sensors and
weapons, adding such devices as a CCIP (con-
tinuously computed impact point) which displays
where a bomb will hit if released, a waypoint com-
puter which displays the appropriate heading to
fly to the next waypoint in a flight plan, air-to-
surface missiles (such as the Exocet), and a prim-
itive form of precision-guided munitions.

One result of our development has been the
recognition that the closer we model the types
of information available to humans, not at the
level of visual perception, but instead at the level
of symbolic data, the easier it is to model the
behavior of the humans. For example, we discov-
ered that creating a waypoint computer and the
CCIP greatly reduced the reasoning required by
the Soar agents because they no longer had to re-
spond to every change in their position relative to
a waypoint or target. Instead they could respond
to the changes in the heading suggested by the
waypoint computer or CCIP.

A problem we foresee in the future is the man-

agement of many Soar/IFOR agents during a pro-
tracted exercise. The problem is not in terms of
command and control (covered in the section on
multiagent interactions), but is in terms of man-
aging the creation, reuse, and destruction of Air-
IFOR agents on many different workstations. To
this end, as well as to support cleaner interfaces
to Soar agents, we have integrated Soar with Tel
[Ousterhout, 1994], a scripting language, that will
help support agent management across many ma-
chines.

4 Agent Design

The overall design of Air-IFOR agents has not
changed significantly over the last year, although
it has been refined and augmented with new tools.
Nor have the basic requirements of Air-IFOR
agents changed. They continue to be the follow-
ing:

1. Encode large bodies of knowledge about rel-
evant aspects of the world, including tactics,
doctrine, sensors, weapons, etc.

2. React quickly to the environment, such as
the behavior of enemy planes, communications
from other friendly agents, and changes in ter-
rain being traversed.

3. Determine the tactically relevant features of a
complex, dynamic environment.

4. Coordinate behavior with other agents.
5. Use minimal computational resources.
6. Deliberately plan aspects of missions not spec-

ified in orders.

4.1 Method and Approach
All of the Soar/IFOR agents are developed within
the Soar architecture. Soar has its roots in early
AI symbolic systems such as LT [Newell and Si-
mon, 1956], and GPS [Ernst and Newell, 1969], as
well as rule-based systems, such as OPS5 [Forgy,
1982]. Soar supports the above requirements by
providing two integrated levels of computation:
deliberate, sequential operators within problem
spaces, and automatic parallel rules. In terms
of the tasks that have to be performed by Air-
IFOR agents, it is easiest to. think in terms of
the first level, operators. We make the claim that
sequences of deliberate operators are the most ap-
propriate way to model the second to second be-
havior of a pilot (or any human for that matter).
Example operators include flying a mission, pick-
ing a control point to fly to, intercepting a ban-
dit, entering a waypoint into the plane's waypoint
computer, deciding which missile to fire, physi-
cally selecting that missile, pushing the fire but-
ton, and so on. Some of these are purely mental
operators, such as deciding which missile to se-
lect, while others include physical actions. Many

of these operators cannot be performed directly as
a single act, but instead must be decomposed into
subgoals where finer-grain operators are selected
and applied. For example, the act of intercepting
a bandit is decomposed into many different op-
erators, such as achieving proximity, employing
weapons, and so forth.

Thus, Soar organizes the doctrine and tactics of
flying missions in planes and helicopters in terms
of hierarchies of operators. For a given opera-
tor that the agent is trying to pursue, such as
an intercept, the operators used to achieve it are
grouped in terms of problem spaces. They are
called problem spaces because their constituent
operators determine the space of problems that
can be solved. Operators can be shared among
more than one problem space. For example set-
ting the waypoint computer is used in flying
routes, as well as flying BARCAPs. Other, so-
called, floating operators, are available in every
active problem space. Floating operators such as
operators that detect changes in a bogey's activ-
ity, are very sensitive to changes to the environ-
ment and usually need to be selected soon after
they become relevant. More generally, the hierar-
chical and floating operators can be seen as at op-
posite ends of two dimensions: sensitivity to the
agent's current goals, and sensitivity to the cur-
rent situation. All operators must be sensitive to
both concerns, but floating operators emphasize
reacting to the current situation (within the con-
text of the current goals), while hierarchical oper-
ators emphasize responding to the current goals
(within the context of the current situation).

Within a subgoal, local situational information
is held in the subgoal's state. Each subgoal has
access to all of the state information in its super-
goals, and the state of the top goal contains all
the data used to fly a mission, including all sensor
data, the agent's interpretation of the current sit-
uation, a description of the current mission, data
on other agents, etc.

The hierarchical operator structure provides
the necessary framework for encoding knowledge
and organizing the behavior of Air-IFOR agents;
however, it alone is insufficient to provide flexibil-
ity and reactivity. What is needed is the ability
to dynamically propose, select, and apply the op-
erators that are appropriate for the current situa-
tion. This is done in Soar through its underlying
rule-base system, which directly implements the
selection, application, and termination of opera-
tors described above. Thus, there are rules which
test the current situation and propose operators,
rules which compare proposed operators and sug-
gest preferences between operators, rules which
test that an operator has been selected and then
performs some aspect of the operator, and rules
that test that all aspect of an operator have been

completed, and signal that the operator is fin-
ished. The actual selection of operators is not
done directly by individual rules, but by a deci-
sion procedure, which selects an operator based
on all relevant preferences.

Most rule-based systems use a conflict-
resolution scheme to select a single rule to fire
on each cycle. However, rules from these systems
map more directly onto Soar's operators, which
are the locus of deliberate activity in Soar, and
where selection is controlled by preferences and
the decision procedure. Soar's rules are more like
an associative memory, where the information in
actions of rules is recalled whenever the condi-
tions of the rules match. Thus to retrieve all infor-
mation relevant to the current situation, the basic
cycle is to fire all rules that match the current sit-
uation, and continue firing until quiescence. Dur-
ing this rule firing phase, rules to implement the
current operator are firing, as well as rules propos-
ing new operators. At quiescence, assuming the
current operator is finished, a decision is made
to select a new operator based on the available
preferences, and the cycle begins again. If the
current operator cannot be finished, possibly be-
cause it requires problem solving in a subgoal, a
subgoal will be created automatically, and then
rules sensitive to the subgoal will fire to suggest
appropriate operators. When a rule detects that
the original operator is finally complete (or should
be abandoned), it will fire and cause a new op-
erator to be selected and the immediate subgoal
(and any additional subgoals) will be automati-
cally removed. Soar is integrated with ModSAF
so that one decision is made for each agent during
each clock tick of the simulation, and thus 2 to 15
decisions are made in each Air-IFOR agent each
second.

4.2 Infrastructure

In mamtaining a rule-based system, the rules
must be organized so that it is easy to find rules,
not only by their name, but also by their role in
producing behavior. For the Soar/IFOR agents,
we have mapped the hierarchical structure of the
operators onto the hierarchical structure of the
Unix file system. Thus, each goal (or subgoal)
has its own directory, and within that directory
there are files for each of the operators, plus a
file for loading in those operator files. For cases
where rules are not shared across agents, we have
a dynamic load facility that loads only the subset
of the code that is relevant to the current agent's
vehicle and mission.

Our lowest-level documentation of the problem
space, operators, and rules is also organized in the
same hierarchical file structure with direct links
from the documentation to the code [Koss and
Lehman, 1994]. A higher level of documentation,

using the terminology and structure of our do-
main experts, links into the problem space docu-
mentation to currently support a limited form of
validation. All of our documentation is in HTML
and it can be accessed through viewers such as
Mosaic and Netscape.

To support the creation of the code and doc-
umentation with our conventions, we have cre-
ated the Soar Development Environment (SDE)
[Hucka and Laird, 1995], which is an extension to
Emacs. SDE has a template language that can
be used to automatically generate all of the nec-
essary directories, code, and documentation files
when new operators are created. SDE also pro-
vides many features to aid in debugging, such
as automatic finding of files in which rules are
stored, point and click commands for common
functions, and general search facilities for the
rules.

4.3 Current Status and Lessons Learned

The current Air-IFOR agents have a combined
total of approximately 320 operators, with a total
of 3,100 rules. Individual agents have between
1,130 and 2,550 rules depending on their missions.
These counts do not include our natural language
or debriefing systems, which by themselves have
substantial numbers of rules.

One of the challenges in building the agents has
been to maintain the computational efficiency of
the system as we add new capabilities. The prob-
lem is not that Soar slows down as the sheer num-
ber of rules increase (research indicates that Air-
IFOR agents may be able to grow to even a mil-
lion rules without this being an issue [Doorenbos,
1994]), but instead the problem is that it is easy
to write rules that fire every time some input data
changes (such as when the current position of the
plane changes). As a result, we closely monitor
rule firings in order to identify costly rules, and
then attempt to rewrite them in order to decrease
their cost. In a few cases, we have discovered
that by removing a computation from Soar that
is done in the cockpit for a pilot, such as with the
waypoint computer and the CCIP, we have been
able to drastically reduce the computational over-
head in Soar.

During agent development, we are able to run
6-10 agents on a single 150MHz 4400 SGI Indy.
However, one of the lessons we learned from
STOW-E is that we are limited to around 4
agents when there are large numbers of entities
on the network. This is because of overhead in
both ModSAF and the Soar agents that results
from the processing of large numbers of entities,
lit response, we expect to put more emphasis
on focusing attention on only the most impor-
tant entities at all levels of processing, as well
as to continue research on efficient matching of

rule-based systems [Acharya and Tambe, 1993;
Kim and Rosenbloom, 1993].

5 Agent Capabilities

Although Soar provides the basic architecture
for building Air-IFOR agents, our agents are more
than a large collection of rules that directly en-
code doctrine and tactics. They must also have
a many cognitive capabilities, some of which are
directly related to military flying such as follow-
ing a flight plan, situational awareness, planning
attacks, employing weapons, and managing fuel,
while others are more general cognitive capabil-
ities, such as communicating with other agents,
modeling the behavior of other agents, being able
to explain the agent's behavior, and using general
problem solving strategies.

To date, we have discovered that although
these general cognitive capabilities are impor-
tant, we have been able to build viable agents
by concentrating on those capabilities directly re-
lated to performing our agents' missions. Thus,
we have developed and incorporated capabilities
for following flight plans, planning attacks, em-
ploying weapons, situational awareness, manag-
ing fuel, and so on. All of these are the building
blocks for various missions. There are also many
capabilities dealing with coordinating behavior
among multiple agents, which are discussed in
the section on multiagent interactions. These ca-
pabilities are all implemented as operators that
have complex subgoals. For example, following
a flight plan involves many operators including
flying routes (of which there are different types
depending on the aircraft), performing various ac-
tivities at waypoints (such as communicating with
control agents or determining if a plane should de-
lay at the point so that it arrives on target at the
appropriate time), selecting the next route, and
processing any changes the agent might receive
to its mission. We expect these capabilities to be
reused on future missions, possibly with modifi-
cation as new variants are required.

We expect that the more general cognitive ca-
pabilities will become necessary as we try to cre-
ate agents which are more autonomous, and thus
able to handle novel situations on their own. To
that end, we are pursuing research in the follow-
ing areas:

1. Natural language processing: Even with the
advent of the Command and Control Simu-
lation Interface Language (CCSIL) [Salisbury,
1995], we will someday want Air-IFOR agents
to directly interact with humans. Air-IFOR
agents will need to understand and generate
natural language, with one of the challenges
being to integrate the processing of language

with all of the other agents' tasks [Lehman et
al., 1995].

2. Behavior explanation: As the complexity of
Air-IFOR agents grow, it is necessary for each
of them to be able to explain its own behav-
ior and internal reasoning. What action did it
take, why did it take that action, why did it
interpret the situation in the way it did, and
what were other options? We have been ac-
tively pursuing these issues in the Debrief sys-
tem, which is a set of Soar rules that when
included in an agent before a run, allows the
agent to be debriefed after flying a mission
[Johnson, 1994].

3. Agent modeling: In order to interpret the ac-
tions of other agents, Air-IFOR agents must
have some understanding of what the other
agents are thinking. This is currently done
in very specialized and context specific ways
in Air-IFOR agents. However, as we start to
explore complex behavior, it will be necessary
for Air-IFOR agents to create general internal
models of what other agents are thinking about
the current situation. For example, deceptive
maneuvers involve generating behaviors with
the goal of leading an opponent to incorrectly
guess what your intent and action really is. We
can currently encode "deceptive" maneuvers in
Air-IFOR agents; however, for the agent itself
to derive an appropriate deceptive maneuver
in novel situations requires the ability to inter-
nally model some of the thought processes of
other agents, a problem we are actively pursu-
ing [Tambe and Rosenbloom, 1995].

4. General Problem Solving and Planning: Our
current agents have all the necessary control
knowledge for making the decisions we ex-
pect them to encounter. However acquiring
this knowledge is difficult and time-consuming,
and this knowledge alone does not always
lead to robust performance in novel situations.
Over the last year, we have done research on
more general problem solving and planning
approaches that can use more "fundamental"
knowledge of the domain and thus increase
the ability of Air-IFOR agents to respond to
novel situations. Using experimental versions
of TacAir-Soar, we have demonstrated the fea-
sibility of integrating both look-ahead plan-
ning [van Lent, 1995] and means-ends analysis
[Wray, 1995] into Air-IFOR agents.

In addition to the more general capabilities
listed above, Air-IFOR agent must have knowl-
edge that includes the doctrine and tactics appro-
priate to the missions they are to perform. Cur-
rently, Air-IFOR agents fly the following fixed-
wing missions: BARCAP, Close Air Support,
Strategic Attack, and MiGSweep. For rotary

wing, Air-IFOR agents can fly a basic anti-armor
mission [Tambe et al., 1995b]. In addition, we
have developed the following agents that act as
controllers during missions [Nielsen, 1995].

• Air Intercept Controller (AIC) and Ground
Controlled Intercept (CGI) which give infor-
mation and commands about enemy planes.
The AIC is situated in a plane with a large
radar, such as an E2C.

• Forward Air Controller (FAC) which provides
final directions for close-air support missions.

• Direct Air Support Center (DASC) assigns air-
craft to missions, can change the mission, and
hands off control to the FAC.

• Fire Support Coordination Center (FSCC) de-
termines the type of support to utilize (dose
air support, artillery, or naval gunfire) and if
close air support is determined it generates a
tactical air request form then sends the request
to the DASC.

• Tactical Air Command Center (TACC) which
provides air traffic control, intermediate rout-
ing, and deconfliction.

• Tactical Air Direction (TAD) controller directs
specific air operations within the area of oper-
ations, prior to the establishment of a DASC.

We have operational versions of all of these
agents, although many are limited to producing
behavior that is only relevant to close air support
and air-to-air missions.

6 Multiagent Interactions

Although the individual agents are by them-
selves important, it is the coordination of agents
that leads to effective military forces. Our ap-
proach is to model the methods and- practices
of military organizations. Air-IFOR agents co-
ordinate their activities through a combination
of common background knowledge (their knowl-
edge of military methods, procedures, doctrine
and tactics), common mission statements, and
explicit communication (non-verbal and verbal)
[Laird et al., 1995]. Because Air-IFOR agents
know what they are supposed to do and when
(because of their background knowledge and mis-
sion statements), the need for explicit commu-
nication is greatly reduced. Also, in contrast to
SAF agents, Air-IFOR agents are "smart" enough
to deal with the details of executing all aspects
of the missions they have been assigned and do
not require constant monitoring by a human or
command agent. When explicit verbal commu-
nication is used, we attempt to model both the
content and form used by real pilots. Thus,
Air-IFOR agents send simulated radio messages
whose content closely mirrors the English words

and phrases used by real pilots. The generation
and interpretation of these messages is currently
done by a fixed set of templates and not a general-
purpose natural language facility (although one is
under development [Lehman et al., 1995J). Air-
IFOR agents currently can generate and interpret
approximately 100 different types of messages.

When flying as a unit, most of the coordination
occurs by the wingman visually observing and re-
sponding to the behavior of the lead of the unit.
The wingman constantly adjusts its position to
stay in the appropriate formation. The wingman
also keeps track of the progress of the unit in its
mission, observing the achievement of waypoints.
Depending on the mission details, the wingman
may change formation, break formation to fly an
independent ground attack, rejoin the formation
following an attack, or even take over as the lead.

Currently, TacAir-Soar agents (Air-IFOR
agents for tactical fixed wing aircraft) are able
to fly as either sections (two planes) or divisions
(four planes). They can fly a variety of forma-
tions and they can dynamically break into smaller
units, such as a division splitting into two sec-
tions, and then later reform as a single unit.
Within a section, the lead and wingman can coor-
dinate their radars (covering different parts of the
sky and communicating enemy contacts) as well
as coordinating their weapons employment dur-
ing air-to-air engagments. During air-to-ground
attacks, a section can use a variety of coordinated
tactics, which are planned by the lead at the be-
ginning of the mission. Our work on coordina-
tion with rotary wing units is also under devel-
opment where currently the helicopters can fly in
pairs, with the expected progression to platoons
and then companies during the next year.

A unit of TacAir-Soar agents, such as a sec-
tion or division, will also coordinate its behavior
with available controllers (AIC, CGI, FAC, TAD,
TACC, FSCC, DASC) [Nielsen, 1995]. The con-
trollers can give the unit flight information (such
as the altitude to fly at, or the name of the next
controller), permission to continue the mission
(permission to enter an area, or permission to at-
tack a target), information on other planes, or
changes to missions. In the case of changing a
mission, a controller can dynamically change al-
most any aspect of a ground attack mission in-
cluding the route, the time on target, and the
final target. When a mission change is received,
the members of the unit change their missions,
sometimes replanning the final attack for air-to-
ground missions.

Our goal is to continue to build up the co-
ordination of Air-IFOR agents into integrated
missions. We are currently close to complet-
ing close-air support which involves a variety of
controllers plus planes doing individual missions.

However, missions such as offensive strike and
integrated interdiction can involve a variety of
different planes flying many different individual
missions (strategic attack, RECCE, MiGSweep,
SEAD, etc.) that have to be closely orchestrated
to pull off the complete mission. We plan on
working on these missions and the required co-
ordination over the next year.

Our approach to date has been to support the
coordination of activities within the set of agents
under our direct control. We have been able to
develop our own templates independent of other
groups. However, in the future some Air-IFOR
agents will need to communicate with other com-
mand forces, and thus, we will soon be using
CCSIL protocols for communication between our
agents and their controllers.

7 STOW-E

During November 4r-7, 1994, a large scale op-
erational military exercise called STOW-E (Sim-
ulated Theater Of War - Europe) was held across
18 installations in United States and Europe. At
its peak, over 1,800 entities were simulated on
the Defense Simulation Internet (DSI). Although
the vast majority of the entities were involved in
ground actions, there were also a significant num-
ber of air missions being flown using humans in
simulators, ModSAF agents, Soar/IFOR agents,
and in a few cases, real planes with instrumenta-
tion that allowed them to be sensed within the
DIS environment (although these planes could
not sense the DIS entities). For the Soar/IFOR
group, this was the first chance to participate
in a realistic, large scale simulation environment
where we did not have complete control over the
scenarios.

Over the four day period, the Soar/IFOR
agents were scheduled to participate in 10 events.
For each event we had specific missions assigned
to Air-IFOR agents that had been given to us
weeks in advance. These missions included defen-
sive air missions (BARCAPs), offensive air mis-
sions to disrupt BARCAPs, air to ground mis-
sions, and air to surface missions.

We successfully fielded agents for every event
in which we were scheduled (10 events, approxi-
mately 32 agents) and participated in many un-
scheduled events (5-7 events, approximately 16
agents). TacAir-Soar performed air-to-air mis-
sions against ModSAF and humans (in simula-
tors). TacAir-Soar attempted to engage planes
from other sites, but because of problems with
the network, the other agents did not see TacAir-
Soar. We also participated in air-to-ground
(bombing bridges, etc.) and air-to-surface (fir-
ing missiles at ships) attacks in which we engaged
ground and surface targets from other sites.

We did have a limited number of software fail-
ures with the most significant being our inability
to fly over the terrain database where the ground
battle was raging when it was populated with
hundreds of tanks. This was caused by a software
bug in our C code for processing ground targets
using radar.

One of our goals was to provide viable oppo-
nents for simulated and human pilots; however it
was difficult to evaluate the "skill" of our TacAir-
Soar because of some problems with the under-
lying simulation models. For example, during
the first day, we were frustrated with the per-
formance of TacAir-Soar in engagements. They
were easily shot down by ModSAF F/A-18's. We
later learned that in order to populate the simula-
tion with different types of planes, the F/A-18's
were created by copying F-14's. The F/A-18's
were therefore carrying Phoenix missiles which
are much longer range than any missile carried
by an F/A-18. TacAir-Soar, basing its tactical
behavior on the known properties of F/A-18's,
was caught by surprise (as it should have been).

In engagements with humans, our planes would
often get into, good tactical positions, only to see
our missiles miss when they were shot. (TacAir-
Soar did have some kills against humans in simu-
lators, but in general, TacAir-Soar got "toasted".)
We believe that the missile missed because of
flaws in the ModSAF missile models. Thus, al-
though TacAir-Soar got shot down, it was in gen-
eral using appropriate tactical maneuvers. In-
dependent of the specific outcome, this exercise
proved the value of taking systems out of the lab-
oratory and testing them in more realistic situa-
tions.

Possibly the best example of our capabilities
was in the execution of an unscheduled event for
the second day. In this mission, a section of F/A-
18's were to perform a ground attack against a set
of islands in the simulated battle area. Our planes
were used in place of a virtual (manned) ground
attack because of the failure of that simulator.
Enroute to the target, the planes were unex-
pectedly intercepted by ModSAF MiG-29's. The
F/A-18's engaged the MiG-29's to defend them-
selves and got off one or two shots (but no kills).
The MiG-29's disappeared from the network, and
our planes automatically returned to their air-
to-ground attack mission. Further enroute, they
were unexpectedly fired on from a surface-to-air
site, killing the wingman (not only did the planes
not expect it, we didn't realize there would be any
surface-to-air systems in STOW-E — clearly an
unscripted interaction). The lead continued on,
successfully dropping bombs on the designated
target and then egressing back to base.

Although we considered our participation in
this exercise a success, it did demonstrated some

weaknesses that we must address in the future.

• Number of vehicles: We discovered that for
an exercise with a large number of vehicles,
we were not able to run the number of vehi-
cles/workstation that we had expected. Part
of this is the overhead in the network process-
ing code of ModSAF, but it also was a problem
for our AIC/E2C agent which could see a large
number of agents at once because of its radar.
This has led us to use more deliberate focus-
ing of attention in Air-IFOR agents so that
they do not attempt to process the complete
situation at once, but instead concentrate on
subsets of the situation, preferably those that
are relevant to the current tactical situation.

• Mission set up: Before STOW-E, we had not
developed any tools to help specify and man-
age the missions of Air-IFOR agents. During
STOW-E, it was time-consuming and error-
prone for us to create or modify the missions.
As a result, we are currently developing graph-
ical interface tools that will make it possible
to enter and modify missions directly, without
editing intermediate data structures. Our goal
is that our interface should give the user the
same look and feel as the documents and tools
used by pilots in their normal briefings. The
integration of Tel and Soar is making this much
easier because of its ability to manage windows
and build formated graphical and textual in-
terfaces. In the future we must also have the
ability to accept missions from other software
systems using CCSIL; however the details of
the protocols have yet to be defined.

• Runtime control: Once Air-IFOR agents re-
ceived their missions, they would fly the mis-
sions without any human management. Thus,
we became observers and ran our exercises
"hands-off". In contrast, the ModSAF planes
required constant attention, with a human con-
trolling their behavior on and off during the
exercise. Although we wish to continue our
approach, we also came to recognize that we
needed the ability to dynamically change some
aspects of the missions of Air-IFOR agents
during the exercise, such as changing the way-
point at which a section of planes is stationed.
These are relatively minor changes to TacAir-
Soar.

This exercise has the additional significance of
demonstrating that "hard core" AI technology
can be successfully used in an operational exer-
cise (although in STOW-E this was in a limited
role). We believe that this is one of the first (if
not the first) time that an AI system has been
used in this way.

8 Summary and Conclusions

In the beginning of the Soar/IFOR project,
there were many questions as to whether it was
practical to develop intelligent forces for synthetic
environments. Although there is still much more
work to do, three years of research and devel-
opment have brought us to the point where we
can state with some degree of certainly that in-
telligent forces are practical and will play a sig-
nificant role in STOW-97. It is difiicult to iso-
late specific parts of our methodology or under-
lying technology as responsible for this success,
although clearly we believe that the underlying
Soar architecture is responsible to a significant
degree. Its ability to combine fine-grain reactive
reasoning of rules, with more deliberate and hier-
archical decision making using operators within
problem spaces, appears to be well matched to
the demands of the interactive simulation and the
cognitive processes of the humans we are attempt-
ing to model.

One surprise has been our ability to build com-
plex and relatively general systems while not us-
ing many of the more advanced techniques such as
means-ends analysis, planning, learning, complex
agent modeling, or natural language. However,
we still believe that these are critical capabilities
for building robust, general agents, and we are
continuing to pursue research in these areas.

In the immediate future, we will continue to
expand the breadth of missions and capabilities
of Air-IFOR agents. For fixed wing, a primary
goal is to develop the appropriate agents to fly
integrated interdiction and strategic attack mis-
sions. The coordination of many different types
of aircraft, with different missions promises to be
challenging. In rotary wing, our goal is to field
a complete company of attack helicopters. Our
plan is for these developments to lead up to a
successful participation of Soar/IFOR agents in
STOW-97.

9 Acknowledgments

This research was supported under contract
N00014-92-K-2015 from the Advanced Systems
Technology Office of the Advanced Research
Projects Agency and the Naval Research Lab-
oratory, and contract N66001-95-C-6013 from
the Advanced Systems Technology Office of the
Advanced Research Projects Agency and the
Naval Command and Ocean Surveillance Cen-
ter, RDT&E division. The authors would like to
thank BMH Associates, Inc. for their technical
assistance.

References

[Acharya and Tambe, 1993] A. Acharya and
M. Tambe. Collection-oriented

match. In Proceedings of the
Second International Conference
on Information and Knowledge
Management, November 1993.

[Calder et al., 1993]
R Calder, J. Smith, A. Courten-
manche, J. Mar, and A. Cera-
nowicz. ModSAF behavior sim-
ulation and control. In Proceed-
ings of the Third Conference on
Computer Generated Forces and
Behavioral Representation, 1993.

[Doorenbos, 1994] RB. Doorenbos. Combin-
ing left and right unlinking for
matching a large number of
learned rules. In Proceedings of
AAAI-94, Seattle, WA, August
1994.

[Ernst and Newell, 1969] G. W. Ernst and
A. Newell. GPS: A Case Study
in Generality and Problem Solv-
ing. Academic Press, New York,
1969.

[Forgy, 1982] C. L. Forgy. Rete: A fast al-
gorithm for the many pattern
/ many object pattern match
problem. Artificial Intelligence,
19:17-38, 1982.

[Hucka and Laird, 1995] M. Hucka and J. E.
Laird. The Soar Development
Environment. Technical report,
The University of Michigan, De-
partment of Electrical Engineer-
ing and Computer Science, 1995.

[Johnson, 1994] W.L. Johnson. Agents that
learn to explain themselves. In
Proceedings of AAAI-94, pages
1257-1263, Seattle, WA, August
1994. AAAI, AAAI Press.

[Jones et al., 1993] R M. Jones, M. Tambe, J. E.
Laird, and P. S. Rosenbloom.
Intelligent automated agents for
flight training simulators. In Pro-
ceedings of the Third Conference
on Computer Generated Forces
and Behavioral Representation,
pages 33-42, Orlando, FL, 1993.

[Kim and Rosenbloom, 1993] J. Kim and P. S.
Rosenbloom. Constraining learn-
ing with search control. In Ma-
chine Learning: Proceedings of
the Tenth International Confer-
ence, pages 174-181, San Mateo,
CA, 1993. Morgan Kaufmann.

[Koss and Lehman, 1994] F. V. Koss and J. F.
Lehman. Knowledge acquisi-

tion and knowledge use in a dis-
tributed IFOR project. In Pro-
ceedings of the Fourth Conference
on Computer Generated Forces
and Behavioral Representation,
Orlando, FL, May 1994.

[Laird and Rosenbloom, 1994] J. E. Laird and
P. S. Rosenbloom. The evolution
of the Soar cognitive architec-
ture. Technical report, Computer
Science and Engineering, Univer-
sity of Michigan, 1994. To appear
in Mind Matters, T. Mitchell Ed-
itor, 1995.

[Laird et al., 1987] J. E. Laird, A. Newell, and
P. S. Rosenbloom. Soar: An
architecture for general intelli-
gence. Artificial Intelligence,
33(3), 1987.

[Laird et al., 1995] J. E. Laird, R. M Jones, and
P. E. Nielsen. Multiagent coordi-
nation in distributed interactive
battlefield simulations. Techni-
cal report, Computer Science and
Engineering, University of Michi-
gan, 1995.

[Lehman et al., 1995] J. F. Lehman,
J. Van Dyke, and R. Rubinoff.
Natural language processing for
IFORs: Comprehension and gen-
eration in the air combat domain.
In Proceedings of the Fifth Con-
ference on Computer Generated
Forces and Behavioral Represen-
tation, May 1995.

[Newell and Simon, 1956] A. Newell and H. A Si-
mon. The logic theory machine:
A complex information process-
ing system. IRE Transactions on
Information Theory, IT-2:61-79,
September 1956.

[Nielsen, 1995] P. Nielsen. Intelligent computer
generated forces for command
and control. In Proceedings of the
Fifth Conference on Computer
Generated Forces and Behavioral
Representation, May 1995.

[Ousterhout, 1994] J. Ousterhout. Tel and the
Tk Toolkit Addison-Wesley,
Reading, MA, 1994.

[Rosenbloom et al., 1991] P. S. Rosen-
bloom, J. E. Laird, A. Newell,
and R. McCarl. A preliminary
analysis of the Soar architecture
as a basis for general intelligence.
Artificial Intelligence, 47,1991.

[Rosenbloom et al., 1993] P. S. Rosenbloom,
J. E. Laird, and A. Newell. The
Soar Papers: Research on Inte-
grated Intelligence. MIT Press,
1993.

[Rosenbloom et al., 1994] P. S. Rosen-
bloom, W. L. Johnson, R. M.
Jones, F. Koss, J. E. Laird,
J. F. Lehman, R. Rubinoff, K. B.
Schamb, and M. Tambe. Intelli-
gent automated agents for tacti-
cal air simulation: A progress re-
port. In Proceedings of the Fourth
Conference on Computer Gener-
ated Forces and Behavioral Rep-
resentation, May 1994.

[Salisbury, 1995] M. Salisbury. Command and
Control Simulation Inter-
face Language (CCSIL): Status
update. In Proceedings of the the
12th Distributed Interactive Sim-
ulation Workshop, 1995. Spon-
sored by STRICOM and the In-
stitute for Simulation and Train-
ing (1ST) at the University of
Central Florida.

[Schwamb et al., 1994] K. B. Schwamb, F. V.
Koss, and D. Keirsey. Work-
ing with ModSAF: Interfaces for
programs and users. In Proceed-
ings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation, May
1994.

[Tambe and Rosenbloom, 1995] M. Tambe and
P. S. Rosenbloom. Agent track-
ing in complex multi-agent envi-
ronments: New results. In Pro-
ceedings of the Fifth Conference
on Computer Generated Forces
and Behavioral Representation,
May 1995.

[Tambe et al., 1995a] M. Tambe, W. L. John-
son, R. M. Jones, F. Koss, J. E.
Laird, P. S. Rosenbloom, and
K. Schwamb. Intelligent agents
for interactive simulation envi-
ronments. AI Magazine, 16(1),
1995.

[Tambe et al., 1995b] M. Tambe, K. Schwamb,
and P. S. Rosenbloom. Building
intelligent pilots for simulated ro-
tary wing aircraft. In Proceed-
ings of the Fifth Conference on
Computer Generated Forces and
Behavioral Representation, May
1995.

[van Lent, 1995] M. van Lent. Planning and
learning in a complex domain.
Technical report, The University
of Michigan, Department of Elec-
trical Engineering and Computer
Science, 1995.

[Wray, 1995] R E. Wray. A general framework
for means-ends analysis. Tech-
nical report, The University of
Michigan, Department of Elec-
trical Engineering and Computer
Science, 1995.

11 Biographies

John E. Laird is an associate professor of
Electrical Engineering and Computer Science and
the director of the Artificial Intelligence Labora-
tory at the University of Michigan. He received
his B.S. degree in Computer and Communica-
tion Sciences from the University of Michigan in
1975 and his M.S. and Ph.D. degrees in Com-
puter Science from Carnegie Mellon University
in 1978 and 1983, respectively. His interests are
centered on creating integrated intelligent agents
(using the Soar architecture), leading to research
in problem solving, complex behavior representa-
tion, machine learning, cognitive modeling.

W. Lewis Johnson is a project leader at
the University of Southern California Information
Sciences Institute, and a research assistant profes-
sor in the USC Department of Computer Science.
Dr. Johnson received his A.B. degree in Linguis-
tics in 1978 from Princeton University, and his
M.Phil. and Ph.D. degrees in Computer Science
from Yale University in 1980 and 1985, respec-
tively. He is interested in applying artificial intel-
ligence techniques in the areas of computer-based
training and software engineering. Dr. John-
son is co-editor-in-chief of the journal Automated
Software Engineering, Secretary/Treasurer of the
SIGART Bulletin, and is on the steering commit-
tee of the AI and Education Society.

Frank V. Koss is a systems research program-
mer in the Artificial Intelligence Laboratory at
the University of Michigan, where he is develop-
ing the interface between the Soar cognitive archi-
tecture and the ModSAF simulator and extending
ModSAF itself. He received his BS in computer
engineering from Carnegie Mellon University in
1991 and his MSE in computer science and engi-
neering from the University of Michigan in 1993.

Jill Fain Lehman is a research computer sci-
entist in Carnegie Mellon's School of Computer
Science. She received her B.S. from Yale in 1981,
and her M.S. and Ph.D. from Carnegie Mellon in
1987 and 1989, respectively. Her research inter-
ests span the area of natural language processing:
comprehension and generation, models of linguis-

tic performance, and machine learning techniques
for language acquisition. Her main project is NL-
Soar, the natural language effort within the Soar
project.

Randolph M. Jones received his Ph.D. in In-
formation and Computer Science from the Uni-
versity of California, Irvine, in 1989. He is cur-
rently an assistant research scientist in the Ar-
tificial Intelligence Laboratory at the University
of Michigan. His research interests lie in the ar-
eas of intelligent agents, problem solving, machine
learning, and psychological modeling.

Paul E. Nielsen is an assistant research sci-
entist at the Artificial Intelligence Laboratory of

- the University of Michigan. He received his Ph.D.
from the University of Illinois in 1988. Prior
to joining the University of Michigan he worked
at the GE Corporate Research and Development
Center. His research interests include intelli-
gent agent modeling, qualitative physics, machine
learning, and time constrained reasoning.

Paul S. Rosenbloom is an associate professor
of Computer Science at the University of South-
ern California and the acting deputy director of
the Intelligent Systems Division at the Informa-
tion Sciences Institute. He received his B.S. de-
gree in mathematical sciences from Stanford Uni-
versity in 1976 and his M.S. and Ph.D. degrees in
computer science from Carnegie-Mellon Univer-
sity in 1978 and 1983, respectively. Bos research
centers on integrated intelligent systems (in par-
ticular, Soar), but also covers other areas such as
machine learning, production systems, planning,
and cognitive modeling. He is a Councilor and
Fellow of the AAAI and a past Chair of ACM
SIGART.

Robert Rubinoff is a postdoctoral research
fellow in Carnegie Mellon's School of Computer
Science. He received his B.A., M.S.E.,-and Ph.D.
from the University of Pennsylvania in 1982,
1986, and 1992, respectively; his dissertation re-
search was on "Negotiation, Feedback, and Per-
spective within Natural Language Generation".
His research interests include natural language
processing, knowledge representation, and rea-
soning. He is currently working on natural lan-
guage generation within the Soar project.

Karl B. Schwamb is a Programmer Analyst
on the Soar Intelligent FORces project at the
University of Southern California's Information
Sciences Institute. He contributes to the main-
tenance of the Soar/ModSAF interface software
and the Tcl/Tk interface to Soar. He received his
M.S. in Computer Science from George Washing-
ton University.

Milind Tambe is a research computer scien-
tist at the Information Sciences Institute, Uni-
versity of Southern California (USC) and a re-
search assistant professor with the Computer Sci-

10

ence Department at USC. He completed his un-
dergraduate education in computer science from
the Birla Institute of Technology and Science, In-
dia in 1986. He received his Ph.D. in computer
science from Carnegie Mellon University in 1991.
His interests are in the areas of integrated AI sys-
tems, agent modeling, plan recognition, and effi-
ciency and scalability of AI programs, especially
rule-based systems.

Julie Van Dyke is a research programmer at
Carnegie Mellon University, working on language
comprehension in NL-Soar. She is also working
toward an MS in Computational Linguistics with
a focus on modeling language acquisition.

Michael van Lent is currently a doctoral can-
didate in the Artificial Intelligence Laboratory at
the University of Michigan. He received his B.A.
with honors in computer science from Williams
College in 1991 and a Master of Science in Com-
puter Science from the University of Tennessee,
Knoxville in 1993. Mr. van Lent also worked for
the Naval Center for Applied Research in Artifi-
cial Intelligence during the summers of 1992 and
1993.

Robert Wray is currently a candidate for the
Ph.D degree in computer science at the University
of Michigan. He received a Bachelor of Science in
Electrical Engineering from Memphis State Uni-
versity in 1988 and a Master of Science in Elec-
trical Engineering from the University of Mas-
sachusetts, Dartmouth in 1993. He also worked
for the Naval Undersea Warfare Center from 1989
to 1993 as an electronics engineer. His current
research, projects and interests in computer sci-
ence include: intelligent agent architectures, ex-
tending traditional artificial intelligence planning
paradigms, machine learning, and software engi-
neering.

11

USING MACHINE LEARNING TO EXTEND AUTONOMOUS AGENT CAPABILITIES

W. Lewis Johnson and Milind Tambe

USC / Information Sciences Institute & Computer Science Dept.
4676 Admiralty Way, Marina del Rey, CA 90292-6695

WWW: http://www.isi.edu/soar/{johnson, tambe}
{Johnson,tambe}Qisi.edu

To appear in the Procedings of the 1995 Summer
Computer Simulation Conference. ©Society for Com-
puter Simulation, 1995. Made available for distribu-
tion over the Internet by permission of SCS.

Keywords: machine learning, interactive simula-
tion, military

1 Introduction

The Soar/IFOR project is developing human-like,
intelligent agents that can interact with humans, and
with each other, in battlefield simulations [10]. Our
agents play a variety of roles such as fighter pilots, he-
licopter pilots, and airspace controllers. The fighter
pilot agents in particular have been successfully de-
ployed in large-scale simulation exercises, such as the
Synthetic Theater of War (STOW) exercise in Novem-
ber, 1994, which modeled a four day battle scenario
involving approximately 2000 military vehicles. Au-
tonomous agents such as Soar/IFOR agents are ex-
pected to continue to play a major role in battlefield
simulations, which in turn are expected to provide an
essential tool for military planning and training in the
future.

Soar/IFOR agents are implemented in Soar, a prob-
lem solving architecture that integrates a number of
human cognitive functions, including problem solving,
perception, and learning [4]. Learning occurs through
the application of a general mechanism called chunking
that summarizes the results of processing on subgoals,
in the form of rules that can apply to similar sub-
goals in the future. This chunking process is a form of
explanation-based learning EBL [7, 6]. Chunking can
lead to speedup in learner performance, and is instru-
mental to the learning of new concepts. Some Soar
systems have managed to learn thousands, and even
hundreds of thousands, of chunks[2].

From the previous experience with learning in Soar,
it was taken as a given that the Soar/IFOR agents

could be made capable of applying chunking in service
of their performance requirements. The first research
question that we focus on in this paper is then the
following: What kinds of knowledge can Soar/IFOR
agents learn in the combat simulation environment?
In our investigations so far, we have found a number
of learning opportunities in our systems, which yield
several types of learned rules. For example, some rules
speed up the agents' decision making, while other rules
reorganize the agent's tactical knowledge for the pur-
pose of on-line explanation generation.

Yet, it is also important to ask a second question:
Can machine learning make a significant difference in
Soar/IFOR agent performance? The main issue here
is that battlefield simulations are a real-world applica-
tion of AI technology. The threshold which machine
learning must surpass in order to be useful in this en-
vironment is therefore quite high. It is not sufficient to
show that machine learning is applicable "in principle"
via small-scale demonstrations; we must also demon-
strate that learning provides significant benefits that
outweigh any hidden costs.

Thus, the overall objective of this work is to de-
termine how machine learning can provide practical
benefits to real-world applications of artificial intel-
ligence. Our results so far have identified instances
where machine learning succeeds in meeting these var-
ious requirements, and therefore can be an important
resource in agent development. We have conducted
extensive learning experiments in the laboratory, and
have conducted demonstrations employing agents that
learn; to date, however, learning has not yet been em-
ployed in large-scale exercises. The role of machine
learning in Soar/IFOR is expected to broaden as prac-
tical impediments to learning are resolved, and the
capabilities that agents are expected to exhibit are
broadened.

12

2 The Problem Domain

Soar/IFOR agents are designed to work within dis-
tributed interactive simulations (DIS) of military exer-
cises. But unlike conventional "semi-automated" enti-
ties in distributed simulations, Soar/IFOR agents are
fully capable of autonomous decision making without
outside human intervention. They are intended to be
realistic models of military agent behavior, so much
so that to an outside observer their behavior is indis-
tinguishable from that of people. They must perform
most if not all of the functions that human personnel
would be called upon to perform, e.g., to issue and/or
understand commands, to coordinate their activities
with friendly forces, and to interpret and respond to
the actions of enemy units. Needless to say, achieving
these goals successfully is a significant achievement for
artificial intelligence.

Soar/IFOR agents interact with distributed simu-
lations via the ModSAF simulation package [1]. Each
agent is assigned to a ModSAF simulation of a vehicle,
e.g., an aircraft. Soar/IFOR receives inputs from the
vehicle, via an abstract interface [8], information sim-
ilar to what a human controlling the same vehicle in
the real world would receive, such as position of the ve-
hicle, presence of enemy vehicles in the area, etc. The
Soar/IFOR agent interprets the situation based upon
the information received, decides on actions to take,
and communicates these to ModSAF as commands for
the vehicle to execute. Some of the details of psy-
chomotor control and resource contention are omitted
from the model, e.g., a Soar/IFOR pilot controls its
aircraft by specifying desired altitudes and headings
instead of by simulating stick movements. However,
these abstractions do not simplify the agents' decision
making task.

Soar/IFOR has been tested in simulated exercises
incorporating manned simulation devices such as flight
simulators, semi-automated forces, as well as auto-
mated forces. Soar/IFOR agents are assigned missions
prior to the engagement, and are otherwise left to carry
out their missions themselves. Agents are evaluated
according to how appropriately they perform in each
individual engagement.

Although such exercises are useful for demonstrat-
ing agent capabilities, they do not in themselves en-
sure that Soar/IFOR agents meet the needs of po-
tential users of distributed simulations. For example,
in order for users to be certain that agent decision
making is realistic, they need to understand the ra-
tionales for the agent's decisions. This has led to the
development of an automated explanation capability,

called Debrief, that enables users to engage agents in
a question-answer dialog, in a manner analogous to an
after-action review [3].

3 Learning in Soar Agents

The air-combat simulation environment—by virtue
of its complex, real-world characteristics—presents
Soar/IFOR agents with a number of challenging func-
tional and performance requirements. There are also
many ways in which machine learning can help the
agents meet these requirements. Chunking in IFOR
has been found so far to enable the following func-
tional capabilities and performance improvements.

• Decision making speeds up over time.

• A memory of past episodes is maintained.

• Problem solving knowledge is reorganized in order
to support explanation and efficient execution.

• Interpretation of situations and events improves
in quality with experience.

A Soar/IFOR agent engages in some of this learn-
ing on-line, i.e., while it is engaged in simulated com-
bat. Prime candidates for such on-line learning include
chunking for speedup, episodic memory and knowl-
edge compilation. However, not all learning can or
should occur on line. In particular, some of the learn-
ing requires that a Soar/IFOR agent consider the con-
sequences of its decisions, explore alternative decisions,
and learn from the results. Because of the real-time
pressures of air-to-air combat, a Soar/IFOR agent may
not have the free time to engage in such deliberation.
Time pressures are certainly not continuous: there can
be momentary lulls in activity that could be used for
deliberation and learning, but as yet are not. Instead,
Soar/IFOR agents rely upon off-line analysis for such
learning. It waits for the combat situation to termi-
nate, so it can analyze past situations without inter-
ruption. This enables the agents to explain their rea-
soning during after-action review, for example.

Learned chunks are applied to future decisions in
the following ways. A chunk learned during an engage-
ment may apply later on within the same engagement.
It may apply during after-action review of the engage-
ment. Finally, chunks created during a mission or dur-
ing after-action review are saved so that they can be
employed by agents in future missions and review ses-
sions, enabling the agents to learn from accumulated
experience.

13

3.1 Speeding Up Decisions

In much machine learning research, such as [5],
speedup is measured by comparing problem solving
time after learning to problem solving time without
learning. Such a measure is inappropriate for learn-
ing in Soar/IFOR, because chunking does not yield an
overall speedup, i.e., it does not reduce the overall du-
ration of the engagement. In other domains such lack
of speedup might be attributable to the high cost of
matching and retrieving the learned chunks[ll]. How-
ever, for Soar/IFOR agents, the cost of matching and
retrieving learned rules is not much of an overhead.
Rather a combination of the following two effects are
at work. First, combat simulation involves performing
(simulated) physical actions and responding to exter-
nal events. Learning cannot affect the duration of such
actions and events; at best it can reduce the time re-
quired to decide on an action or interpret an event.
Second, cognitive activity is concentrated in isolated
episodes, separated by periods of relative inactivity.
Speedups in deliberation contribute very little to re-
ductions in the overall duration of a scenario. For in-
stance, suppose a Soar/IFOR agent decides to launch
a missile at an opponent. To that end, it must decide
which type of missile to employ, and how best to ap-
proach the opponent's aircraft. These decisions take
up at most a few seconds. The agent then has to wait,
sometimes for up to a minute or more while the op-
ponent gets into its missile firing range. Decision time
thus has little or no effect on overall time to intercept
the opponent.

Although learning has little effect on the overall du-
ration of engagements, it can make a substantial dif-
ference in time-critical situations. In such situations,
small delays in an agent's action can jeopardize its sur-
vival, or prevent the agent from exploiting momentary
advantages over an opponent. For instance, when a
Soar/IFOR agent fires a missile at its opponent, the
opponent may engage in a missile evasion tactic that
can cause it to break radar contact (disappear from the
Soar/IFOR agent's radar). The opponent may then
turn quickly to fire a missile at the Soar/IFOR agent.
This is an extremely time-critical situation. When
the opponent turns back after its missile evasion ma-
neuver, the Soar/IFOR agent obtains a new contact
(blip) on its radar. This blip could be the opponent,
or perhaps a friendly aircraft who has just arrived in
radar range. The Soar/IFOR agent must quickly de-
termine the contact's identity, and then launch a sec-
ond missile before the opponent fires her missile. If
the Soar/IFOR agent is delayed in re-establishing the

opponent's identity, it may get shot down. Chunking
can enable Soar/IFOR agents to arrive at important
decisions more rapidly the next time a similar situa-
tion is encountered. The end result is that the agents
can survive longer, and fight better.

A possible way of measuring speedup might be to
measure an agent's reaction time, i.e., the from an ex-
ternal event until the agent's response to that event.
This presupposes, however, that the stimuli are con-
trolled so that there is a clear relationship between
stimulus and response. However, battlefield engage-
ments are not like controlled laboratory experiments:
instead, agents are constantly exposed to a variety of
stimuli, and perform a variety of tasks, often at the
same time. Reducing the amount of time required to
interpret one stimulus often has the indirect effect of
enabling the agent to attend to other stimuli that were
previously overlooked, such as a second opponent that
has just arrived in radar range. This clearly can have
an impact on overall agent performance, but in a way
that is difficult to quantify.

3.2 Maintaining an Episodic Memory

It is useful for Soar/IFOR agents to have an episodic
memory, so that they can recall episodes from previous
engagements during after-action review or subsequent
missions. Episodic memory can be regarded as an as-
pect of learning, insofar as the problem solver's rea-
soning after memory formation is different from that
before memory formation. It is instrumental to other
types of learning: for example, if an agent can recog-
nize that the current situation is similar to previous
situations, it can then apply its previous experience to
the new situation.

We have found that chunking can be readily em-
ployed to address part of the episodic memory prob-
lem, namely to learn to recall the circumstances in
which a given event occurred. That is, when presented
with a description of an event, chunks fire which recre-
ate a description of the world state that prevailed at
that time. Other aspects of episodic memory, such as
recalling what events occurred as part of a given mis-
sion, are not as yet handled via chunking; the agent
instead simply records the events that occur in a con-
ventional list data structure.

The episodic memory mechanism relies on two sets
of chunks. The first set consists of recognition chunks,
which are common in a range of Soar systems. Recog-
nition chunks fire in response to some description that
serves as a memory probe, indicating that an instance

14

matching the probe has been seen before. In the
Soar/IFOR case, the memory probe consists of a de-
scription of an event, together with a possible state
change. If the state change occurred at the time
the event was observed, the recognition chunk will
fire. These recognition chunks are created in a special
episodic-memory subgoal, which is processed whenever
the agent notices a significant state change. The sec-
ond set of chunks are recall chunks, which recall the
complete state in which an event occurred, when pre-
sented with an event description as a memory probe.
The first time Soar/IFOR attempts to recall the state
associated with an event, it first tries to find an earlier
event for which it can recall a state. It then tries to
recall which state changes occurred between the earlier
state and the state of interest. The previously created
recognition chunks identify the relevant state changes.
Once the recall process is complete, a recall chunk is
created, so that the next time the event is used as a
memory probe the state is immediately recalled.

Episodic memory illustrates how chunking can serve
as an underlying mechanism for a variety of types of
learning besides simple speedup. Such learning may
require problem spaces that are specially designed to
generate particular types of chunks such as recognition
chunks or recall chunks.

3.3 Reorganizing Knowledge

Chunking also enables Soar/IFOR agents to reor-
ganize their knowledge. In knowledge based systems
generally, the form in which knowledge is encoded de-
pends upon how the knowledge engineer intends the
knowledge to be used. Learning enables knowledge
encoded for one purpose, i.e., controlling the agent's
behavior, to be employed for other purposes, e.g., ex-
plaining the agent's decisions.

Soar/IFOR's interactive explanation capability,
called Debrief, makes extensive use of chunking for
knowledge reorganization [3]. The agents can explain
the rationales for decisions made during an engage-
ment, by relating chosen decisions to the critical fac-
tors in the situation that led to those decisions. The
knowledge needed to generate such explanations, i.e.,
associations between decisions and sets of situational
factors, is different from the knowledge used to gener-
ate the decisions in the first place. For one thing, the
process of generating the decision may involve inter-
nal reasoning mechanisms that are of little interest to
someone who is not an agent developer. Recognition
chunks are built which identify the key factors leading
to a decision in a given situation. This is accomplished

by reconsidering the decisions after the engagement is
over, and proposing hypothetical changes to the situa-
tion in which the decision was made. The set of state
features that prove significant, because altering them
alters the outcome of the decision, is saved in a chunk.
If the agent is asked to explain a similar decision in a
similar situation, the recognition chunk will fire iden-
tifying those features of the situation that should be
included in the explanation.

Knowledge reorganization also allows knowledge or-
ganized for ease of knowledge engineering to be ren-
dered in a form suitable for efficient execution. The
Soar/IFOR project is developing a variety of types of
agents, among which only some knowledge is shared.
Rules therefore tend to be factored so as to separate
the shared knowledge from the unshared knowledge.
Chunking is used in some cases to combine this knowl-
edge into larger agent-specific rules, thus reducing the
number of rules that must execute. This happens be-
cause chunking summarizes the results of all rules that
are executed in a subgoal, in the form of a single rule
that represents their combined effect. Agent develop-
ers are thus free to encode the knowledge in a factored
form, with the expectation that the factored rules will
be combined when they are executed by the agent.

3.4 Improving Situation Interpretations

Accurate interpretations of the rapidly evolving
battlefield situation is key to a Soar/IFOR agent's suc-
cessful task performance. One important component
of such an interpretation is accurate tracking of an
opponent's ongoing actions, to infer her higher level
goals, plans or behaviors. For instance, a Soar/IFOR
agent cannot actually observe a missile, but needs to
infer a missile firing based on the opponent's maneu-
vers, as shown in Figure 1. Here, the Soar/IFOR agent
is piloting the dark-shaded aircraft and its opponent
the light-shaded one. In Figure 1-a the two aircraft
are on collision course—if they fly straight they will
collide at the point shown by x. After reaching her
missile firing range, the opponent turns her aircraft to
point at the Soar/IFOR agent's aircraft (see Figure
1-b). In this situation, the opponent fires a missile.
She then turns 45-degrees—an Fpole turn—to provide
radar guidance to the missile, while slowing the closure
between the two aircraft. The Soar/IFOR agent can-
not observe this missile, but based on the opponent's
turn to point at its aircraft and the subsequent Fpole
turn, it needs to infer that the opponent has fired a
missile.

unfortunately for the Soar/IFOR agents, the hu-

15

(a)

—"\

(b) (c)

Figure 1: Tracking an opponent's normal missile firing
maneuvers. An arc on an aircraft's nose indicates its
turn direction. The missile is indicated by -.

man pilots in the STOW-E exercise (see Section 1)
were briefed as to what cues Soar/IFOR looks for
when interpreting opponent actions, and how they
might be able to fool Soar/IFOR by avoiding these
cues. They deliberately modified their missile fir-
ing behavior to fire missiles while maintaining a 25-
degree angle-off (i.e., pointing 25-degrees away from
Soar/IFOR agents' aircraft). The Soar/IFOR agents
failed to track the missile firing and got shot down. Of
course, human pilots are bound to come up with novel
variations on known maneuvers, and the Soar/IFOR
agents cannot be expected to anticipate them. Yet,
at the same time, agents cannot remain in a state
of permanent vulnerability—for instance, getting shot
down each time the variation of 25-degrees gets used—
otherwise they would be unable to provide a challeng-
ing and appropriate training environment for human
pilots.

The Soar/IFOR agents must adapt their opponent
tracking to counter such adaptive behavior on the part
of humans. To this end, we are developing the ca-
pability to analyze the past combat episodes off-line,
and learn from obvious errors. In the above case, the
Soar/IFOR agent records in its episodic memory that
it got shot down. Its episodic memory of the com-
bat also reveals that it never detected the opponent's
missile firing behavior. Simultaneously, however, the
episodic memory will note that the agent did face a
mysterious maneuver that it was unable to track (cor-
responding to the missile firing with a 25-degree angle-
off). Based on this episodic memory, the agent can
learn that the human pilot can fire a missile from a
25-degree angle-off.

4 Practical Aspects of Using Chunking

Given the Soar/IFOR agents' real-world environ-
ment, the costs and benefits of chunking have to be
evaluated from a practical perspective. The key ques-
tion here is: Do the benefits of chunking outweigh its

costs as it stands today? In this regard, the following
factors need to be taken into account:

1. The Soar/IFOR agents' current knowledge is al-
ready encoded in a highly optimized form, so that
they can rapidly respond to opponents' maneu-
vers. It is difficult for chunking to improve upon
such decisions, other than to reorganize the en-
coded knowledge somewhat, as described above.

2. The agents' current knowledge is the result of ex-
tensive knowledge acquisition sessions. Some of
the tactical knowledge gained from these sessions
is highly sophisticated and a result of careful anal-
ysis of the capabilities of the opposing forces. It
is difficult for chunking techniques to reconstruct,
much less improve on, this expertise.

3. Chunks learned are sometimes highly specific—
their conditions refer to the agent's current situ-
ation in terms of the value of its altitude, speed,
range from an opponent, etc. Such chunks do not
transfer (apply) to other similar situations, thus
reducing the effectiveness of chunking.

4. The learning process itself can incur development
overhead. Modifications to agent code can in-
validate previously created chunks. Thus as the
agents are modified, training sessions must be run
repeatedly in order to produce an up-to-date set
of chunks.

The above practical issues in applying chunking,
combined with our earlier observations regarding the
lack of overall speedups, implies that on-line chunking
has to be very carefully applied, if at all, in service of
speedups. We find it expedient to turn chunking on
when the agents are making certain types of decisions,
and turn it off elsewhere.

5 Long-Term Prospects

As development of Soar/IFOR proceeds, new op-
portunities continue to present themselves for making
more extensive use of machine learning, and to em-
ploy existing learning abilities in new ways. Episodic
memory is a good example of the latter: once an agent
has the ability to remember previous episodes, a va-
riety of possibilities for learning from those episodes
present themselves. As the added capabilities afforded
by machine learning accumulate, and the costs asso-
ciated with learning are mitigated, the benefits stem-
ming from learning are expected to dominate the costs
to a greater and greater extent.

16

There is reason to believe, in fact, that eventually
further improvement in performance of Soar/IFOR
agents will only be achievable by means of machine
learning. As long as the decision making of Soar/IFOR
agents is governed by fixed rules, wily human oppo-
nents will learn ways of gaining advantages over the
agents. This will be especially true if and when these
agents are integrated into training devices that are
used on a routine basis. If current work on enabling
Soar/IFOR to learn from experience can be applied
to a range of situations and scenarios, then human
trainees will find simulations to be continually chal-
lenging, and able to put their tactical skills fully to
the test.

Acknowledgement

We gratefully acknowledge Paul Rosenbloom's com-
ments on this paper, as well as the contribution of the
other members of the team involved in the creation
of the Soar/IFOR agents, including John Laird, Ran-
dolph Jones, Karl Schwamb, and Frank Koss. This
research was supported under contract N00014-92-K-
2015 from the Advanced Systems Technology Office
(ASTO) of the Advanced Research Projects Agency
(ARPA) and the Naval Research Laboratory (NRL) to
the University of Michigan, via a subcontract to USC;
and under contract N66001-95-C-6013 from ARPA and
the Navael Command and Ocean Surveillance Center,
RDT&E division (NRAD).

References

[1] R.B. Calder, J.E. Smith, A.J. Courtemanche,
J.M.F. Mar, and A.Z. Ceranowicz. ModSAF be-
havior simulation and control. In Proceedings
of the Third Conference on Computer Generated
Forces and Behavioral Representation, pages 347-
359, Orlando, FL, March 1993. Institute for Simu-
lation and Training, University of Central Florida.

[2] R.B. Doorenbos. Matching 100,000 learned rules.
In Proceedings of the National Conference on Ar-
tificial Intelligence, pages 290-296, Menlo Park,
CA, August 1993. AAAI.

[3] W.L. Johnson. Agents that learn to explain them-
selves. In Proceedings of the National Conference
on Artificial Intelligence, pages 1257-1263, Seat-
tle, WA, August 1994. AAAI, AAAI Press.

[4] J.E. Laird, A. Newell, and P.S. Rosenbloom. Soar:
An architecture for general intelligence. Artificial
Intelligence, 33:1-64, 1987.

[5] S. Minton. Quantitative results concerning the
utility of explanation-based learning. Artificial
Intelligence, 42(2-3):363-391,1990.

[6] T. M. Mitchell, Keller R. M., and S. T. Kedar-
Cabelli. Explanation-based generalization: A uni-
fying view. Machine Learning, l(l):47-80,1986.

[7] P. S. Rosenbloom and J. E. Laird. Mapping
explanation-based generalization onto soar. In
Proceedings of the Fifth National Conference on
Artificial Intelligence, pages 561-567, 1986.

[8] K.B. Schwamb, V.F. Koss, and D. Keirsey. Work-
ing with ModSAF: Interfaces for programs and
users. In Proceedings of the Fourth Conference on
Computer Generated Forces and Behavior Repre-
sentation, pages 395-399, Orlando, FL, May 1994.

[9] V J. Shute and J.W. Regian. Principles for evalu-
ating intelligent tutoring systems. Journal of Ar-
tificial Intelligence in Education, 4(2/3) :245-273,
1993.

[10] M. Tambe, W.L. Johnson, R.M. Jones, F. Koss,
J.E. Laird, P.S. Rosenbloom, and K. Schwamb.
Intelligent agents for interactive simulation en-
vironments. To appear in AI Magazine, Spring
1995.

[11] M. Tambe, A. Newell, and P. S. Rosenbloom.
The problem of expensive chunks and its solution
by restricting expressiveness. Machine Learning,
5(3):299-348,1990.

Biographies

W. Lewis Johnson is a project leader at USC/ISI
and a research assistant professor in the USC Depart-
ment of Computer Science. Dr. Johnson received his
A.B. degree in Linguistics in 1978 from Princeton Uni-
versity, and his M.Phil, and Ph.D. degrees in Com-
puter Science from Yale University in 1980 and 1985,
respectively.

Milind Tambe is a computer scientist at USC/ISI
and a research assistant professor with the computer
science department at USC. He completed his under-
graduate education in computer science from the Birla
Institute of Technology and Science, Pilani, India in
1986. He received his Ph.D. in 1991 from the School

17

of Computer Science at Carnegie Mellon University,
where he continued as a research associate until 1993.

18

Planning in the Tactical Air Domain*

Randolph M. Jones, Robert Wray, Michael van Lent, and John E. Laird
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48109-2110
{rjones,wrayre,vanlent,laird}@eecs.umich.edu

Abstract

TACAIR-SOAR is a reactive system that rises
recognition-driven problem solving to plan and
generate behavior in the domain of tactical air
combat simulation. Our current research efforts
focus on integrating more deliberative planning
and learning mechanisms into the system. This
paper discusses characteristics of the domain that
influence potential planning solutions, together
with our approach for integrating reactive and
deliberative planning.

TACAIR-SOAR (Jones et al. 1993; Rosenbloom et al.
1994) implements artificial, intelligent agents for use in
tactical flight training simulators. The overall goal of
the project is to create automatic agents that generate
behavior as similar as possible to humans flying flight
simulators. These agents will help provide relatively
cheap and effective training for Navy pilots.

In order to accomplish this task, we need not only to
acquire and encode a large amount of complex knowl-
edge, but also to address a number of core research is-
sues within artificial intelligence. Not the least of these
issues is the ability for the agent to plan its activities
appropriately, and to acquire efficient and effective new
behaviors as a consequence of planning.

We are investigating the hypothesis that a variety of
appropriate behaviors can arise from a system with a
small, organized set of cognitive mechanisms as it inter-
acts with a complex environment. Thus, the primary
thrust of our research relies on integration in a num-
ber of different forms. Reactive behavior generation

Thanks to Paul Rosenbloom, Lewis Johnson, Soowon
Lee, Frank Koss, and the reviewers for their comments
on earlier drafts of this paper. In addition, this research
has benefited enormously from the combined efforts of the
Soar-IFOR group. The research is supported by contract
N00014-02-K-2015 from the Advanced Systems Technology
Office of the Advanced Research Projects Agency and the
Naval Research Laboratory.

must be integrated with goal-directed reasoning and
planning. These in turn must be integrated with other
cognitive capabilities, such as situation interpretation,
natural language understanding and generation, plan
recognition, planning, etc. Rather than combining dis-
tinct modules for execution, planning, and learning,
we are attempting to integrate all of these capabilities
within a single control scheme. Thus, planning be-
comes simply another form of execution, which must
interact with other knowledge in order to generate ap-
propriate behavior. Learning occurs as a side effect of
execution, manifesting itself in different ways depend-
ing on the particular tasks being executed. Because of
the incremental, dynamic, and complex nature of be-
havior generation in the tactical air domain, learning
must also be incremental, fast, and able to capture the
complexities of goals and actions.

The current version of TACAIR-SOAR combines re-
active and goal-driven reasoning to create what we
call recognition-driven problem solving (Tambe et al.
1994). The system contains a large set of rules that
fire as soon as their conditions are met, without search
or conflict resolution. Some of these rules respond to
immediate changes in sensory inputs, while others re-
spond to higher-level interpretations of those changes
and goals that the system posts for itself. As an ex-
ample, TACAIR-SOAR may observe a series of readings
about a contact on its radar, and conclude that the
contact is an aggressive enemy aircraft. Thus, the sys-
tem posts a goal of intercepting the aircraft, which in-
volves maintaining a collision course. The actual head-
ing of TACAIR-SOAR'S aircraft will change every time
the collision course changes. This paradigm for be-
havior generation is similar to reactive planning in the
spirit of Firby's (1987) RAP planners. That is, the
system does not perform any search to determine the
best course of action, and it does not plan in terms of
predicting future states of the environment.1 It also

1TAcAm-SOAR agents do some prediction, but it is part

19

computes its behavior dynamically, rather than gener-
ating a declarative plan that is later interpreted. Part
of our current research effort is to equip TAC AIR-SOAR

with a deliberative planning component that separates
planning from normal execution by projecting future
possible states and searching through them to decide
on appropriate courses of action.

Of the following three sections, the first provides a
short motivation for the usefulness of deliberative plan-
ning in the tactical air domain. The second lists a
number of characteristics of the domain that have a
significant impact on how planning must occur. These
characteristics have been discussed in various earlier
work on planning, but our work will address all of
them together and attempt to provide a planning so-
lution that naturally integrates into recognition-driven
problem solving. The final section sketches potential
solutions for deliberative planning. These solutions are
suggested by a combination of the characteristics of the
domain, our desire for a fully integrated system, and
the problem-solving and learning paradigms provided
by the Soar architecture.

Advantages of Deliberative Planning
As mentioned previously, the overall goal for the
TACAIR-SOAR system is to generate human-like be-
havior within the simulated environment. One hall-
mark of human behavior is flexibility in the face of
new situations. The current system has been equipped
with a large knowledge base of tactics, vehicle dynam-
ics, weapons characteristics, etc., and this allows the
system to generate a wide variety of behaviors in re-
sponse to different situations, missions, and goals. One
approach to this type of domain has been to attempt to
capture every possible situation that an agent may en-
counter in a recognition rule (e.g., Bimson et al. 1994).
However, even if such an approach is possible, it would
require extensive work on the knowledge base every
time the domain changes a bit (for example, if new
aircraft or missiles are developed).

In response to this difficulty, an agent must detect
when it does not have suitable knowledge to react to a
particular situation, and use its planning capabilities to
generate appropriate actions based on more fundamen-
tal knowledge. This requires the agent to integrate de-
liberative planning with its current recognition-driven
reasoning mechanisms. Naturally, we also expect the
agent to learn from its planning episodes, generating
new rules for future similar situations.

TACAIR-SOAR will do much of its planning "in the
air," where there are tight restrictions on time, thus

of normal behavior generation, and not something that is
learned about for decision making.

limiting the learning opportunities. However, human
pilots often learn by flying real or simulated scenar-
ios, and then debriefing the scenarios on the ground.
By going back over each step of the scenario, the pi-
lot can identify successes and failures, consider alter-
native courses of action, and take more time to eval-
uate various possible outcomes. Automated agents
have also been demonstrated to benefit from such self-
explanations (VanLehn, Jones, & Chi 1992). In addi-
tion, Johnson (1994a; 1994b) has presented a debrief-
ing facility, in which TACAIR-SOAR agents can explain
their actions after a scenario, and consider some hypo-
thetical alternatives. The deliberative planning mech-
anism should expand on this approach and allow the
system to learn from the debriefing experience. In ad-
dition, we intend the same planning mechanism to be
used for planning both in the dynamic environment of
an engagement and the calm, slow-paced environment
of a debriefing session. Naturally, when the agent has
more time to plan, the quality and quantity of effective
learning should increase, but this will be due to the dy-
namics of the planning situation, not because of any
differences in the planning and learning mechanisms.

Planning Issues for Tactical Flight
This section focuses on the specific aspects of the tac-
tical air domain that have a significant impact on how
planning should be carried out. There are five par-
ticular characteristics that set the domain apart from
traditional domains used in planning research.

Interaction of Domain Goals

The current version of TACAIR-SOAR knows about al-
most 100 different types of goals, and many of these
interact with each other. For example, there are times
when an agent wants simultaneously to fly toward a
target, evade an incoming missile, and maintain radar
contact with another aircraft. This presents the tradi-
tional problem of planning for goal conjuncts (Chap-
man 1987; Covrigaru 1992). However, we must trade
off the intensive search that can be involved in this
type of planning with the dynamic and uncertain na-
ture of the task (discussed below). Other researchers
(e.g., Cohen et al. 1989; Veloso 1989) have suggested
methods for planning about conjunctive goals in real
time, and we hope to borrow from these approaches in
our own efforts.

Two primary elements of conjunctive goal planning
are detecting a goal interaction and then finding a way
to deal with the interaction. Within TACAIR-SOAR,

interactions will generally be detected when conflict-
ing output commands are sent to the simulator (e.g.,
to come to two different headings) or when goal con-

20

straints are incompatible (e.g., turning away from a
target while also maintaining a radar lock). In general,
there will be two methods for dealing with such goal
interactions. Some goals can be achieved conjunctively
(perhaps not as efficiently as if the goals were indepen-
dent), but sometimes it will be necessary to suspend
certain goals temporarily when goals of higher prior-
ity (such as evading an incoming threat) conflict with
them.

Dynamic, Real-Time Environment

As suggested above, TACAIR-SOAR cannot generally
assume that it has ample time to plan. An agent may
be planning an intercept course to a target when it
detects an incoming missile. In this case, the agent
must interrupt its planning in order to react in a timely "
fashion. As a slightly different case, the situation may
change so rapidly that the conditions that initiated
planning may become obsolete before planning is com-
pleted. For example, the agent may begin planning
which type of weapon it should employ against a tar-
get, only to find it destroyed by some other partici-
pant in the engagement. In both of these situations,
the system should cease its planning activity, even if it
did not find a result. Reactive planning systems (e.g.,
Agre & Chapman 1987; Firby 1987; Kaelbling 1986),
and TACAIR-SOAR'S recognition-driven problem solv-
ing address some of these issues by dynamically chang-
ing goals and behaviors as the environment changes.
The next challenge is to integrate deliberative plan-
ning with dynamic reasoning in a smooth way.

Large State Representation
A further characteristic of the domain is that it in-
volves rather large representations of the agent's cur-
rent situation. The state representation includes infor-
mation about various vehicle and weapon types, sen-
sor information (from visual, radar, and radio sources),
the agent's current mission goals, other "mental" an-
notations, and interpretations of the state, actions,
and goals of other agents. For normal recognition-
driven problem solving, the situated TACAIR-SOAR

agent simply reacts to various features in this large
state by generating actions or posting new goals or
new interpretations of the situation.

The size of the state can impact deliberative plan-
ning in three ways. First, any time the agent wishes to
plan, it must construct a copy of its current state rep-
resentation. It can then manipulate this copy without
changing its actual representation of the world or is-
suing real behaviors. Second, separating the two state
representations allows the system to generate low-level
reactions in response to one state while planning with
the other. Because it takes some time to create this

mental planning state, the agent should copy only the
necessary information for planning and no more. Fi-
nally, some of the state information will be important
to the current plan, while other information will be less
important or totally irrelevant. It is not desirable for
the agent to reason about portions of the state that
have no bearing on the current decision. Thus, deci-
sions about how much state to copy will have an impact
on learning and the generality of new behaviors.

Planning in the Face of Uncertainty

A key feature of the tactical air domain is that there is
generally a large number of participants in any given
scenario. Some research (e.g., Georgeff 1984) has fo-
cused on this problem, and it naturally will have a
strong effect on how TACAIR-SOAR can interpret and
predict the consequences of its actions while plan-
ning. Anticipating the actions of cooperating agents
may not be too difficult, because there exist social
engagements and standard operating procedures be-
tween agents that cooperate. Predicting the future
actions of competing agents is somewhat more diffi-
cult, and relies in part on recognizing the plans and
goals of those agents (Tambe & Rosenbloom 1994;
Wilensky 1981).

Given the unpredictable nature of modeling other
agents, it is most appropriate for TACAIR-SOAR to
create completable plans (Gervasio & DeJong 1994),
in order to react appropriately to future actions by
other agents. Contingency plans (Warren 1976) might
also be useful, but these are generally expensive to
generate. In a sense, TACAIR-SOAR'S current knowl-
edge base consists of a large completable plan, and
such planning is consistent with our desire to integrate
the current recognition-driven problem-solving struc-
ture with deliberative planning. The results of delib-
erative planning should be completable, reactive plans
that the agent can execute and adaptin response to
the dynamics of the environment.

Termination of Planning

As we have already mentioned, available time will have
a large impact on how long any planning activity can
continue. However, termination of planning is also in-
fluenced by when results can be produced. Most tradi-
tional planners have small sets of explicit, well-defined
goals, and a precise evaluation function, so they can
plan until a method is found to achieve their goals.
Within the tactical air domain, there are many differ-
ent types of goals, and different degrees to which they
can be achieved. As an example, if an aircraft has the
mission to protect its aircraft carrier, it may produce
the goal of destroying an incoming attack aircraft. Af-
ter the engagement has proceeded, the agent may find

21

itself drifting from the carrier it is supposed to protect.
At this point, it may decide that it has completed its
mission by "scaring off the threat, without actually
destroying it, and it would be more dangerous to con-
tinue than to return to its patrol position.

The combination of limited reasoning time and ill-
defined goals provides a further complexity for plan-
ning. The question is how far the planning pro-
cess should continue, and when evaluation should take
place.

Solutions for Deliberative Planning
These characteristics all have an impact on how plan-
ning can occur in an intelligent agent. Many of these
issues have been addressed to some extent in previous
research, but we hope to build an integrated system
that addresses all of them. This section describes our
preliminary efforts to develop an integrated planning
solution that addresses all of the complexities of the
domain. It begins with a discussion of the overall in-
tegrated framework, and then describes specific ideas
for each of the planning issues.

Integrated Planning, Learning, and
Execution

Our commitment to an integrated system began with
our selection of the Soar architecture (Laird, Newell,
& Rosenbloom 1987) as the platform for develop-
ment. Soar provides an ideal basis for recognition-
driven problem solving, and naturally supports the in-
tegration of execution, planning, and learning (Laird
& Rosenbloom 1990).

Readers familiar with Soar will recall that all rea-
soning and behavior generation takes place in problem
spaces, through the deliberate selection of operators. A
fair amount of research on traditional planning within
Soar (e.g., Lee 1994; Rosenbloom, Lee, ic Unruh 1992)
also organizes planning knowledge as sets of problem
spaces. Problem spaces are collections of knowledge
that address subgoals, which arise in response to a lack
of knowledge in a particular situation. A typical exam-
ple for planning occurs when an agent has a number of
candidate actions to take, but does not have the knowl-
edge to decide between them. For example, a pilot
must decide which type of weapon to employ against
a target, given the current mission and circumstances
of the environment. After planning knowledge (e.g.,
a mental simulation of the alternatives) suggests an
ordering, the automatic learning mechanism summa-
rizes search in the problem space into individual rules
("chunks") that will apply in future similar situations.

We should stress the point that the natural rep-
resentation for a plan within TACAIR-SOAR is not a

declarative script of actions. Rather, a plan is a col-
lection of recognition-driven rules and operators that
apply opportunistically in response to particular pat-
terns of sensor values, interpretations, and goals. Thus,
in a sense, TACAIR-SOAR will never be learning entire
plans, but it will be repairing or completing the general
plan composed of all of its recognition rules.

Addressing Domain Issues

This integrated framework suggests possible solutions
for planning that also address the issues presented ear-
lier. To begin with, the high degree of interaction be-
tween goals suggests criteria for both triggering and
evaluating new plans. Previously, we suggested that
planning occurs when TACAIR-SOAR does not have
the reactive knowledge necessary to choose between
competing actions. This can be generalized to initiat-
ing planning any time the system detects an interac-
tion between goals that it does not know how to han-
dle. Covrigaru (1992) and Lee (1994) have investigated
planning methods within Soar to address interactions
between different types of goals. Evaluation of poten-
tial plans will be based on the resolution of individual
interactions—as opposed to, for example, planning ex-
haustively until all interactions are resolved. As the
agent develops responses to individual interactions, it
can learn partial planning results in the form of new
recognition rules.

These partial results also address the dynamic char-
acteristics of the domain. Such planning will inte-
grate smoothly with normal behavior generation be-
cause every planning episode will cause the system
to learn something. If it is not something that com-
pletely resolves the current situation, it should at least
allow the planning process to resume later without hav-
ing to start over. Thus, particular planning efforts
can be temporarily suspended (or perhaps abandoned
entirely) without having been a total waste of time.
When the system has ample time to plan (such as in a
debriefing session), it is not clear whether the planning
process will need to be qualitatively different. Presum-
ably, the system will still be able to use its incremental
planning techniques, but generate better quality plans
because it has more time to evaluate and resolve inter-
actions.

Also in response to to the dynamic domain, our
initial efforts with TACAIR-SOAR have addressed the
issue of integrating planning with execution. Many
of the system's actions can apply without regard for
whether the system is currently planning. For any as-
pects of the current situation that do not depend on
the current planning activity, the system continues to
generate behavior independent of other processing.

22

Because of TACAIR-SOAR'S large state representa-
tion, we have adopted high-level, qualitative descrip-
tions that summarize direct sensor readings, thereby
reducing the amount of information that must be
copied. In addition, the system attempts to make intel-
ligent decisions about the portions of the state it cares
about. These decisions are based on a static analysis
of the domain knowledge, as well as dynamic reasoning
based on the current situation. This allows the system
to limit the amount of work it does in creating a mental
copy of the state, which has been our primary concern
in preliminary work on planning.

Our hope is that this approach will also aid the sys-
tem in reasoning in an uncertain environment. As we
have discussed, an appropriate response to this issue
is to generate completable plans. In TACAIR-SOAR'S
terms, we wish to learn new rules for posting general
goals, allowing the specific situation at execution time
to dictate the precise actions that should be taken to
satisfy those goals. Thus, a further aim for setting up
a mental state for planning is to abstract away details
that can be filled in by the situation later.

Finally, the criteria for terminating the planning pro-
cess arise in part from the solutions we have already
discussed. If there is time to plan exhaustively, the
system will generate solutions for all the goal inter-
actions it detects. Because the system returns incre-
mental results as it plans, it is not as important for
it to determine a fixed stopping criterion. If planning
must be suspended temporarily, the partial planning
results should allow planning to resume from where
it left off. Finally, as we have mentioned, the system
is able to generate behavior simultaneously with plan-
ning in many situations, so planning will not have to
be interrupted until it is actually finished.

Summary

Simulated tactical air combat is an ideal, real domain
for developing and testing new planning methods. The
complexities of the task require us to focus on a num-
ber of planning issues that can be safely ignored in
traditional planning domains. Although many of these
issues have been addressed to some extent in the plan-
ning literature, we plan to provide an integrated so-
lution to all of them. We have begun creating a sys-
tem that smoothly integrates reactive and deliberative
planning within the recognition-driven problem solving
framework. Although our efforts with the deliberative
planning component are young, our initial experiences
have been encouraging. Hopefully, the complexities
and real-time demands of the tactical air domain will
lead us to a system that can model a continuum of
planning processes from purely reactive to knowledge

intensive and deliberate.

References
Agre, P. E., and Chapman, D. 1987. Pengi: An
implementation of a theory of action. In Proceedings
ofAAAI-87, 123-154. Menlo Park, CA: AAAI Press.

Bimson, K.; Marsden, C; McKenzie, F.; and Paz,
N. 1994. Knowledge-based tactical decision mak-
ing in the CCTT SAF prototype. In Proceedings of
the Fourth Conference on Computer Generated Forces
and Behavioral Representation, 293-303.

Chapman, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32:333-377.

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.; and
Howe, A. E. 1989. Understanding the design require-
ments for agents in complex environments. AI Mag-
azine 10(3):32-48.

Covrigaru, A. 1992. Emergence of meta-level con-
trol in multi-tasking autonomous agents. Ph.D. Dis-
sertation, Department of Electrical Engineering and
Computer Science, University of Michigan.

Firby, R. J. 1987. An investigation into reactive plan-
ning in complex domains. In Proceedings ofAAAI-87,
202-206. Menlo Park, CA: AAAI Press.

Georgeff, M. 1984. A theory of action for multiagent
planning. In Proceedings ofAAAI-84,121-125. Menlo
Park, CA: AAAI Press.

Gervasio, M. T., and DeJong, G. F. 1994. An incre-
mental learning approach for completable planning.
In Machine Learning: Proceedings of the Eleventh Na-
tional Conference, 78-86. San Francisco, CA: Morgan
Kaufmann.

Johnson, W. L. 1994a. Agents that explain then-
own actions. In Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral Rep-
resentation, 87-95.

Johnson, W. L. 1994b. Agents that learn to explain
themselves. In Proceedings of AAAI-94, 1257-1263.
Menlo Park, CA: AAAI Press.

Jones, R. M.; Tambe, M.; Laird, J. E.; and Rosen-
bloom, P. S. 1993. Intelligent automated agents for
flight training simulators. In Proceedings of the Third
Conference on Computer Generated Forces and Be-
havioral Representation, 33-42.

Kaelbling, L. P. 1986. An architecture for intelligent
reactive systems. In Proceedings of the Workshop on
Planning and Reasoning about Action, 235-250.

Laird, J. E., and Rosenbloom, P. S. 1990. Integrating
execution, planning, and learning in Soar for external

23

environments. In Proceedings of AAAI-90,1022-1029.
Menlo Park, CA: AAAI Press.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artifi-
cial Intelligence 33:1-64.

Lee, S. 1994. Multi-Method Planning. Ph.D. Disser-
tation, Department of Computer Science, University
of Southern California.

Rosenbloom, P. S.; Johnson, W. L.; Jones, R. M.;
Koss, F.; Laird, J. E.; Lehman, J. F.; Rubinoff, R.;
Schwamb, K. B.; and Tambe, M. 1994. Intelligent au-
tomated agents for tactical air simulation: A progress
report. In Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral Repre-
sentation, 69-78.

Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1992. Bias
in planning and explanation-based learning. In Chip-
man, S., and Meyrowitz, A., eds., Machine Learn-
ing: Induction, analogy and discovery. Norwell, MA:
Kluwer.

Tambe, M., and Rosenbloom, P. S. 1994. Event track-
ing in complex multi-agent environments. In Proceed-
ings of the Fourth Conference on Computer Gener-
ated Forces and Behavioral Representation, 473-484.

Tambe, M.; Jones, R. M.; Laird, J. E.; Rosenbloom,
P. S.; Schwamb, K.; and Koss, F. 1994. Intelli-
gent agents for interactive simulation environments.
Manuscript in preparation.

VanLehn, K.; Jones, R. M.; and Chi, M. T. H. 1992.
A model of the self-explanation effect. Journal of the
Learning Sciences 2:1-59.

Veloso, M. M. 1989. Nonlinear problem solving
using intelligent casual commitment. Technical Re-
port CMU-CS-89-210, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

Warren, D. H. D. 1976. Generating conditional plans
and programs. In Proceedings of the AISB Confer-
ence, 344-354.

Wilensky, R. 1981. Inside computer understand-
ing: Five programs plus miniatures. Hillsdale, NJ:
Lawrence Erlbaum.

24

Multiagent Coordination in Distributed Interactive Battlefield
Simulations*

John E. Laird, Randolph M. Jones, and Paul E. Nielsen
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
laird@umich.edu

Introduction
On November 4-7, 1994, the Department of De-
fense held an operational exercise called STOW-E,
involving over 1,800 entities in a virtual battlefield,
making this one of the largest applications of real
time, multi-agent simulation. The participants in-
cluded both humans (in simulators and specially in-
strumented vehicles) and computer generated forces,
interacting in real-time, unscripted, realistic engage-
ments. By 1997, DOD plans to hold a virtual theater-
level war involving up to 50,000 entities. These sim-
ulations provide a cost-effective and flexible environ-
ment for training, mission rehearsal, and tactics devel-
opment. The computer forces are implemented via a
spectrum of approaches, from aggregate forces gener-
ated by wargames, to human managed semi-automated
forces (SAFORs), to completely autonomous intelli-
gent forces (IFORs). The computer forces dominate
in terms of sheer numbers, with at least 10 times as
many computer generated forces as human forces.

Our interest is in the development of IFORs, com-
puter agents with the ability to participate fully in all
aspects of the simulated battlefield. The Soar/IFOR
consortium, involving the University of Michigan, In-
formation Sciences Institute of the University of South-
ern California, and Carnegie Mellon University, is de-
veloping .IFORs for all military air missions: air to
air combat, air to ground attacks, air supply, anti-
armor attack, etc. IFORs must have many capabili-
ties to be successful: real-time reactivity, goal-directed
problem solving, planning, large bodies of knowledge,
and they must coordinate their behavior with other
friendly forces. Furthermore, to be useful and effec-
tive in training and tactics development, the tactical
behavior of our agents must be humanlike. We have
demonstrated the feasibility of developing IFOR agents
(Rosenbloom et ai. 1994), and our agents fully partici-
pated in STOW-E, flying air-to-air, ground attack, and
surface attack missions against human and computer

*This research was supported under contract N00014-
92-K-2015 from the Advanced Systems Technology Office
of the Advanced Research Projects Agency and the Naval
Research Laboratory.

generated forces.
Within this domain, coordination is one of the most

important determiners of success. A single unit has
only limited ability to sense its environment directly,
and has only limited ways in which it can act. Through
coordination of sensing, multiple agents can share their
knowledge about the environment, thus making then-
actions far more effective. Through coordination of
their actions, multiple agents can avoid conflicting ac-
tion and they can perform actions that no single agent
can perform alone, such as mutual defense. The prob-
lem is how to get many different agents, in different
physical locations, with different models of the envi-
ronment, with different physical abilities, and possibly
different short-term goals, to work together to achieve
their common long term goals.

Previous work in computer-generated forces (Calder
et cd. 1993) has not extensively modeled the coordi-
nation of individual forces. In the majority of cases,
either an omniscient human or computer agent pro-
vides the appearance of coordination through low-level
monitoring and controlling of individual agents. When
tight coordination of behavior of a small unit is re-
quired, such as a section of planes flying in formation,
the aggregation is treated as a single unit. Instead of
attempting to represent the communication and coor-
dination of the individual planes, behavior is gener-
ated for the section as a whole and then specialized for
the individual unit (Rao et al. 1994). Thus, individ-
ual units are not faced with integrating coordination
activities with their own goals, nor do they need to
communicate with other units.

Our approach is straightforward. We model the
command and control methods currently in use by mil-
itary organizations. Thus, our agents directly model
the performance of humans: there is a one to one map-
ping between our agents and humans. Our agents have
the same limits in perception and action that a human
would have, and they must coordinate their behavior
just as humans do, through shared knowledge and com-
munication. Some of the advantages of tins approach
include:.
1. Coordinated behavior is more realistic. Our agents

coordinate based on shared doctrine, shared mis-

25

sions, and explicit communication. Explicit commu-
nication requires time to transmit and interpret, and
is open to mis-interpretation, jamming, etc. By in-
dependently modeling each entity (instead of a group
as a whole), our agents can take the initiative when
appropriate.

2. Coordinated behavior should be easier for humans to
understand because there is explicit communication
to monitor.

3. Coordination is possible between human and com-
puter forces because the communication is modeled
on human communication.

In building our agents, we discovered that some
of the issues that have plagued previous research in
multi-agent coordination do not arise in this domain.
First, coordination is possible without the addition
of special purpose "architectural" capabilities (such
as the generation and transmission of partial-global
plans (Durfee & Lesser 1987; Durfee 1988)). An archi-
tecture designed to support general intelligent agents
— such as Soar (Laird, Newell, & Rosenbloom 1987)
— appears to be sufficient. Coordination does re-
quire large bodies of knowledge and inference (it is a
knowledge-level capability (Huffman, Miller, & Laird
1993)), but these need not be specialized except in con-
tent. Second, our agents do not need to carry out pro-
tracted negotiations (Rosenschein 1993; Smith 1980;
Sycara 1989), "reason about the processes of coordi-
nation among the agents" (Bond & Gasser 1988), or
dynamically construct complex models of those agents
(Ephrati & Rosenschein 1992). Because our agents are
designed to work within the military's well establish
hierarchy of command, control, and communication,
and because our agents are "experts" for their tasks,
negotiation, runtime reasoning, and complex internal
models of friendly agents can be "compiled" out, with
just the knowledge of how and when to coordinate re-
maining. Our agents require only very limited informa-
tion about other agents, such as locations, call signs,
radio frequencies, and positions within the command
hierarchy.

The goal of this paper is to demonstrate the suffi-
ciency of our simplier approach for a real-world appli-
cation, and to analyze the complexity of coordination
required in this domain.1 We begin by presenting a
scenario that illustrates the coordination required in
this domain. We then analyze the required coordina-
tion along three dimensions: the organizations of the
agents, the type of activities that are coordinated, and
finally the sources of knowledge that support coordina-
tion. Next we identify the general capabilities that are
required to support coordination and how they are re-
alized in our underlying architecture of choice (Soar).
We conclude with a discussion of the limits our ap-
proach.

This is an extension of oar earlier work on air-to-air
coordination (Laird, Jones, & Nielsen 1994).

Example Scenario
Our agents include pilots of fighter and air-to-ground
attack planes, and a variety of controllers that provide
mission and routing information to the planes. We at-
tempt to realistically model current military doctrine
and tactics. Our sources include unclassified military
documents, books, extensive interviews with former
U.S. Navy pilots, and observations of U.S. Navy pilots
training in real aircraft and in military flight simula-
tors. Our agents are built within TacAir-Soar (Rosen-
bloom et al. 1994), our generic name for agents that
fly simulated fixed-wing aircraft developed within Soar.
Our agents' simulation environment is based on the
DIS protocol (steering committee 1994). The agents
interact with the DIS world through ModSAF (Calder
et al. 1993), which provides simulations of vehicle dy-
namics, sensors, and weapons. DIS (and ModSAF)
support distributed, interactive, real-time simulation
for ground, surface, and air entities. For example, in
STÖW-E, our planes engaged both humans in simu-
lators and SAFOR computer generated forces. Our
planes fired simulated exocet missiles at a real ship
(the Hue City) that was participating in the simula-
tion through special instrumentation, bombed a virtual
bridge, shot down humans in simulators, and were shot
down by humans in simulators and once by a virtual
surface-to-air missile. Each of our agents is an inde-
pendent Soar system situated in its own virtual vehi-
cle (such as an F-18), and is restricted to perceiving
what would be available to a human in such a vehi-
cle (via radar and vision). Communication between
agents takes place via simulated radios using messages
that approximate the messages sent by humans.

Consider the scenario in Figure 1 in which two
fighter planes (F-18's) are flying as a section on an air-
to-ground mission. This is similar to a mission flown by
Soar agents during STOW-E, but has been expanded
for expositional purposes to include a broader variety
of coordination types (all of which are implemented in
our agents). The original goal of the mission is to bomb
Target 1. Once the planes are airborne, they join up
into a prebriefed formation (at time 1), and start on
their prebriefed flight plan (Elmer to Cougar to Wanda
to Target 1). The lead (Fl) controls the section and
makes all section-level mission decisions, as well as fly-
ing his own plane. The wingman (F2) flies so as to
maintain the current formation.

While flying their route, the lead checks in with a
controller (the TACC) to receive permission to enter
the combat area, and to receive possible changes in
routing information. The controller may request au-
thentication to verify that the plane is friendly. The
job of the controller is to verify that planes are where
they belong, to perform air traffic control to avoid col-
lisions (usually by assigning different routes and alti-
tudes), and to relay commands from other command
entities.

Let us assume that an E-2C (at time 2) informs the

26

rXACC

Figure 1: Example Scenario

planes of an approaching threat (the MiG-23's). Usu-
ally there would be other planes available to deal with
the MiG's, but this allows us to illustrate some im-
portant types of coordination. The MiG-23's must de-
pend on a ground controller (GCI), which has a much
more powerful radar to guide them toward the engage-
ment by giving them bearing and range information of
the F-18's. Similarly, the F-18's will get information
about the MiG's from the E-2C. However, once the F-
18's have the MiG's on their own radar, and they have
been cleared to engage by their controller, they will
prosecute the engagement on their own, receiving in-
formation from the controller only when they request
it (such as if they lose radar contact).

During the engagement, the lead of the F-18's com-
municates to the wingman to change formation to one
that provides more mutual support, and to "sort" the
MiG's so that they each have a separate target. Simi-
larly the MiG's communicate to perform their tactical
maneuver (called a pincer). In this engagement, we
assume that both MiG's are destroyed (at time 3). In
general, the F-18's would jettison their bombs prior to
the engagement to increase their maneuvering ability,
but we will assume that they did not and continue then-
ground attack mission.

Once the F-18's destroy the MiG's, they head back
to their next waypoint (Cougar). At about this time,
the forward air controller (FAC) comes under attack
by enemy tanks. The FAC calls to another controller
(the TAD) and requests an air strike. The TAD con-
tacts the F-18's (at time 4) and gives them a new mis-
sion. The lead of the F-18's must then plan their final
attack altitude and geometry from the "initial point"
(Wanda) to the target and communicate it to the wing-
man. As they approach the initial point (wanda), the

lead communicates the mission to the FAC to verify the
target, etc Once the FAC verifies the mission and vi-
sually sites the planes, the FAC sends them a "cleared
hot" message to attack the target. The F-18's perform
a 90-10 maneuver (planned earlier by the lead) to pro-
vide separation during the final bombing run. Since
the tanks are moving, the F-18's must visually acquire
them, modify their approach, and drop their bombs
(at time 5). They then exit the attack area and fly
back on their egress route (not shown).

Although, our agents embody all of the reasoning
and communication required in this scenario, they do
not embody all that humans use in the complete range
of air-to-air and air-to-ground missions. For example,
our planes only fly in groups of two (sections), not in
groups of three or four (divisions). Also, a forward air
controller can mark a target for a plane by. using a flare,
a beacon, or a laser. In addition, our E-2C agents do
not direct planes to specific air targets. Currently they
only provide contact information that our agents use
to make their own decisions. We plan to implement all
these types of coordination in the near future.

Coordination Analysis
The purpose of this analysis is to demonstrate the di-
versity of coordination being performed by our agents
across a variety of dimensions.

Coordination Organization
The previous example illustrates the three organiza-
tional structures of coordination used by the military
and our agents. In all cases, a section or a plane is con-
trolled by another entity (lead, or controller), but the
individual agents still have significant autonomy and
responsibility for their own actions. The command

27

structure is relatively static, and a section is in con-
tact with only a single controller at a given time. The
current controller for a section is determined by the
mission briefing, or by explicit communication from
another controller.
• Master slave: The lead dictates the actions of the

section, but the wingman still decides how best
achieve and stay in formation. The wingman can
become lead if he has better situational awareness
or weapons capability.

• Centralized: The GCI and E-2C (as well as the
TACC and TAD) can provide information and con-
trol for many sections of planes.

• Distributed: The TACC, TAD, and FAC form a dis-
tributed control network in which requests for mis-
sions are propagated through the network and as-
signed to sections. The controllers coordinate the
activities of multiple fighters by routing them, as-
signing altitudes, communication frequencies, and
attack times.

Types of Coordination

Within the different coordination organizations listed
above, the agents coordinate a variety of different ac-
tivities. The left half of Figure 2 lists the types of
coordination found between the lead and wingman in
terms of coordinated action, sensing, missions, and sec-
tion organization. This organization is not represented
explicitly within the agents. Most of the coordination
occurs in terms of action: flying in formation and em-
ploying their weapons. They coordinate in sensing, by
directing their radars so that they are not completely
overlapping. They explicitly communicate radar and
visual sightings. They also coordinate their execu-
tion of their mission, and the lead will communicate
changes to the mission, current progress in the mis-
sion, and intent, such as the decision to intercept en-
emy planes. Finally, they coordinate the organization
of the section.

The right half of Figure 2 shows the types of co-
ordination found between a section and a controller.
Here there is no coordination of their joint actions
(although the mission coordination provides indirect
coordination of the section with other planes). The
coordinated sensing is in similar spirit to the coordi-
nation within a section, although in this case the con-
trollers have much better radar capabilities. The most
involved coordination comes under the mission head-
ing, where the controllers can change almost any as-
pect of the mission for a section, including the altitude
for flying routes, the routes, the controllers the section
contacts along the route, the radio frequency to use
during the contact, the target location, and the time
of the attack. Because the timing of an attack is criti-
cal (e.g. it may be coordinated with the ending of an
artillery barrage), the controllers also provide a time
hack, to synchronize everyone's watches. The need to
attack at a specific time (+/- ten seconds), forces the

planes to adjust their speed dynamically or even go
into holding patterns.

Basis of Coordination

In this domain, the key to coordination is knowl-
edge. The agents must know the appropriate tech-
niques and methods for performing their specific tasks,
such as maneuvering, sensing, and employing their own
weapons. They must know their responsibilities for
their current mission, the details of that mission, and
who the other agents are that they must interact with.
They also must known in general terms when and what
to communicate to which agents during the mission,
and what to do in response to messages from others.
We have identified four different sources of coordina-
tion knowledge.

Background Knowledge: Common Doctrine
and Tactics. Most of the long-term knowledge in
our agents consists of knowledge about how to perform
their missions. This includes how to maneuver, sense
and employ weapons, but it also includes doctrine and
tactics which specify methods and procedures for co-
ordinating with other agents. This doctrine includes
specific roles for individuals (such as lead, wingman,
TAC, TADD, FAC) and the specific duties to be per-
formed. Thus, there is no need for the lead and wing-
man to negotiate how to maintain the formation. The
wingman just does it. This is a social contract, where
agents implicitly create coordinated behavior by be-
having according to certain prespecified rules (Shoham
& Tennenholtz 1992).

The reliance on common background knowledge to
support coordination in the military is not surprising.
The military has sufficient planning and training time
to develop and implement common doctrine and tac-
tics. The individual agents need not determine the
best coordination strategy on their own, but can rely
on compiled versions of the coordination strategy.

Mission Briefing. Before a mission, the partici-
pants are briefed on the tactical situation (such as
weather and enemy activity), their responsibilities, and
the responsibilities of others. The briefing helps estab-
lish specific operational parameters required for coor-
dination, such as the partners of a section, their ini-
tial formations, the methods for communication (radio
frequencies, call signs), the default radar contract, the
default method for sorting enemy planes, any specific
tactics the section plans to employ, the waypoints of
the mission, the controllers who will be contacted dur-
ing the mission, the authentication procedures, and so
on. Based on the mission briefing, the lead will fill
in any details, such as an attack plan, based on the
mission and the tactical situation. In our agents, the
mission briefing knowledge is not ''compiled" into the
agent, because it changes from mission to mission. It
is a set of parameters that are loaded into our agents
before they start their missions.

28

Lead and Wingman Coordination
Action

Maneuvering
Joining, flying in & changing formation
Turning
Tactical maneuvers

Weapons employment
Targeting & sorting

Sensing
Opponent sighting & tracking
Friendly sighting & identification

Mission
Mission progress
Current intent
Attack plan

Organization
Change the lead

Controller and Lead Coordination
Action
Sensing

Opponent sighting & tracking
Friendly sighting & identification

Mission
Change of mission

Altitude, route, contacts, radio freq,
target, bombing time,...

Current intent
Mission progress
Mission authorization
Time synchronization

Organization
Change in communication procedures

Figure 2: Types of Coordination Between TacAir-Soar Agents.

Observed Behavior. During a mission, the mem-
bers of a section can directly observe each other's be-
havior. Thus, behavior alone can be a signal for co-
ordination, as when a lead makes a small turn. In
TacAir-Soar, the only use of coordination through ob-
servation is when the wing responds to small turns of
the lead. This will be expanded when our agents need
to fly without radio communication because of jam-
ming or the danger of detection.

Explicit Communication. The most flexible way
to coordinate behavior is to explicitly communicate
knowledge and goals between two agents. In this do-
main, it is via radio. We have attempted to replicate
the communication used by humans for the missions
performed by our agents. There are approximately 70
message templates that our agents can send and re-
ceive. These message templates approximate the lan-
guage used by naval aviators and are easily understand-
able by humans.

Coordination Capabilities
In this section, we summarize the cognitive capabil-
ities required to support coordination in our agents.
This is based on types of coordinated behavior (act-
ing, sensing, mission, etc.), and the methods for shar-
ing knowledge and goals. These capabilities serve as
a requirements list for constructing an agent that can
coordinate with others in domains such as tactical air
combat. For each capability, we describe briefly how it
is implemented in TacAir-Soar.

Extensive Knowledge Base. Our approach relies
heavily on the fact that the individual agents are ex-
perts at performing their missions and interacting with
others. Each agent must have an extensive knowledge

base that includes all of the tactics and doctrine ap-
plicable to its possible roles in the missions in which it
will participate. For example, a wingman must have
the same knowledge of doctrine and tactics as the lead,
so that the wingman can take over when necessary.

TacAir-Soar's knowledge is encoded as rules. Our
attack aircraft have over 2600 rules, while our ground-
based controllers have over 1800 rules. The doctrine
and tactics are encoded within a hierarchy of inter-
twined goals that are dynamically instantiated based
on the current situation and mission.

Parameter-driven Behavior. An agent must not
be limited to only one type of behavior, but must be
able to perform a variety of activities in coordination
with others. In our agents, the mission briefing re-
ceived before launch and the mission changes received
from controllers dynamically determine the goals of our
agents. The agent's behavior must be parameterized
so that the knowledge relevant to the current mission is
used. These may sound trivial, but for some complex
missions, the information in the briefing may involve
fragments of plans that the agent must integrate into
its overall behavior at the appropriate times. Thus,
the generators of the agent's behavior must be flexible
enough so that they-can be modified at any time.

In TacAir-Soar, all mission-related behavior is based
on a representation of the current mission that is held
in a working memory. This can be examined by the
rules that make up its long-term knowledge. The mis-
sion is specified at briefing time, but also can be dy-
namically changed later.

Reactive Execution and Interruptible Process-
ing. A wingman must respond quickly to changes in
the lead's behavior. Computer generated forces must

29

in general be reactive, but coordination also requires
that they can interrupt their current goals to process
and respond to an urgent message.

In TacAir-Soar, the wingman's main goal is to fly in
formation with the lead. Whenever the wingman is out
of position, rules fire to propose operators to modify
the heading, speed, or altitude. Whenever the wing-
man receives radio messages from the lead, rules fire
to propose operators which in turn perform an action
appropriate to the message in the current situation.

Generate and Comprehend Messages. In order
to communicate with other agents, an agent must be
able to translate its internal information about its
goals, its perception of the world, and its current ac-
tions, into a form that can be understood by other
agents. The converse is translating messages from
other agents into an internal representation that the
agent can work with. The general solution to both
requires full natural language.

In the current version of TacAir-Soar, we finesse the
1 general problem and use a template-based approach

where we prespecify the form of the messages that
the system can generate and accept. Our agents know

! when to generate these messages. They also know how
to interpret these messages and modify their own inter-
nal knowledge structures appropriately. Thus, we've
implemented the types of communication required by
our agents but gone no further. However, the human
interactions themselves are very stylized, with a strong
emphasis on encoding information into short phrases
whenever possible. For example, a pilot might send
"bogey dope" to a ground controller, which is request
for information on the current bogey that the pilot is
engaging. This approach has been successful for the
types of communication our agents need to produce,
and is natural enough so that humans can fly as lead
or wingman with our agents using a simulation inter-
face with menu-driven communication that approxi-
mates the cockpit of an F-14, MiG-29, or E-2C (van
Lent & Wray 1994). The human communicates with
our agents through a menu-driven interface, and the
messages from our agents are understandable to the
human. However, this approach will break down when
extended to unrestricted natural language interactions
with real pilots. To that end, we are investigating gen-
eral natural language approaches (Rubinoff & Lehman
1994).

Discussion
On the surface, our approach might appear to suffer
from rigidity because it depends on a set of "canned"
interactions based on existing doctrine and tactics.
However, our agents are not blindly applying a fixed
doctrine independent of changes in the environment.
Instead, our agents are continually reassessing the sit-
uation, dynamically stringing together bits and pieces
of existing doctrine and tactics that are appropriate
to each situation, possibly generating novel behavior

(when viewed over time). Thus, our agents do very
well as long as the situation is covered by some com-
bination of existing military practice (which includes
defining new missions and many types of changes to
the organizational structure). In completely novel sit-
uations, our agents will use whatever pieces of doctrine
that are relevant to the situation. However, our agents
do not have the ability to step back and reason from
first principles about what would be a new, possibly
novel coordinated response to the situation (although
this is one of our research areas).

The long term goal of our work is to build intelligent
autonomous agents. In this paper, we have demon-
strated that it is possible to create agents for a complex
environment in which coordination is critical. Our ap-
proach has been straightforward. We try to model the
coordination methods used by humans, and to date,
we have implemented coordination without negotia-
tion, extensive internal agent modeling, or special ar-
chitectural mechanisms. The coordination arises out
of shared doctrine and tactics, shared knowledge of
missions, observations of behavior, and explicit com-
munication. Our success is heavily dependent on four
characteristics of our domain which simplified the im-
plementation of coordination: the shared goals of the
agents, the expert-level performance (and knowledge)
of the agents, the well-defined methods and procedures
of the military that we are modeling, and the availabil-
ity of experts that are willing and able to provide the
details of procedures.

In the near future we will be extending our agents
to all military air missions, including helicopters, joint
mission with ground forces, and large scale coordinated
strikes (involves 20-30 aircraft at once). These new
missions with allow us to evaluate the sufficiency of our
approach in an even more complex and "coordination-
rich" domain.

30

References
Bond, A. H., and Gasser, L. 1988. Readings in Dis-
tributed Artificial Intelligence. Morgan Kaufmann.
Calder, R.; Smith, J.; Courtenmanche, A.; Mar, J.;
and Ceranowicz, A. 1993. ModSAF behavior simula-
tion and control. In Proceedings of the Third Confer-
ence on Computer Generated Forces and Behavioral
Representation.

Durfee, E. M, and Lesser, V. R. 1987. Predictability
versus responsiveness: Coordinating problem solvers
in dynamic domains. In Proceedings of the tenth IJ-
CAI, 875-883. San Mateo, CA: Morgan-Kaufmann.
Durfee, E.M. 1988. Coordination of Distributed Prob-
lem Solvers. Boston, Mass.: Kluwer Academic Pub-
lishers.
Ephrati, E., and Rosenschein, J. S. 1992. Constrained
intelligent action: Planning under the influence of a
master agent. In Proceedings of AAAI-92. MIT Press.
Huffman, S. B.; Miller, C. S.; and Laird, J. E. 1993.
Learning from instruction: A knowledge-level capa-
bility within a unified theory of cognition. In Pro-
ceedings of the Fifteenth Annual Conference of the
Cognitive Science Society, 114-119.
Laird, J. E.; Jones, R. M.; and Nielsen, P. E. 1994.
Coordinated behavior of computer generated forces
in TacAir-Soar. In Proceedings of the Fourth Confer-
ence on Computer Generated Forces and Behavioral
Representation.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artifi-
cial Intelligence 33(3).
Rao, A.; Lucas, A.; Selvestrel, M.; and Murray, G.
1994. Agent-oriented architecture for air combat sim-
ulation. Technical report, The Australian Artificial
Intelligence Institute. Techinal Note 42.
Rosenbloom, P. S.; Johnson, W. L.; Jones, R, M.;
Koss, F.; Laird, J. E.; Lehman, J. F.; Rubinoff, R.;
Schwamb, K. B.; and Tambe, M. 1994. Intelligent au-
tomated agents for tactical air simulation: A progress
report. In Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral Repre-
sentation, 69-78.
Rosenschein, J. S. 1993. Consenting agents: Negoti-
ation mechanisms for multi-agent systems. In IJCAI
93.
Rubinoff, R., and Lehman, J. F. 1994. Natural lan-
guage processing in an IFOR pilot. In Proceedings of
the Fourth Conference on Computer Generated Forces
and Behavioral Representation.
Shoham, Y., and Tennenholtz, M. 1992. On the syn-
thesis of useful social laws for artificial agents soci-
eties (preliminary report). In Proceedings of AAAI-
92. Morgan Kaufmann.
Smith, R, G. 1980. The contract net protocol:
High-level communication and control in a distributed

problem solver. IEEE Transactions on Computing
29(12):1104-1113.
steering committee, T. D. 1994. The DIS vision: A
map to the future of distributed simulation. Techni-
cal Report IST-SP-94-01, Institue for simulation and
training, University of Central Florida, Orlando, FL.
Sycara, K. 1989. Multiagent compromise via negoti-
ation. In Gasser, L., and Huhns, M., eds., Distributed
Artificial Intelligence, Vol. II. London: Pitman. 119-
138.
van Lent, M., and Wray, R. 1994. A very low cost
system for direct human control of simulated vehicles.
In Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representation.

31

32

Natural Language Processing for IFORs: Comprehension and Generation in
the Air Combat Domain

Jill Fain Lehman, Julie Van Dyke, and Robert Rubinoff
Carnegie Mellon University

Pittsburgh, PA 15213
jefOcs.cmu.edu

Abstract

In support of the Soar/IFOR project's
goal of providing intelligent forces for dis-
tributed interactive simulation environ-
ments [Laird et al., 1995], the NL-Soar
project works toward the implementation
of a full natural language capability for
Air-IFOR agents. In this paper we dis-
cuss the design of that language capa-
bility (NL-Soar) and its integration into
TacAir-Soar agents. In particular, we
demonstrate how NL-Soar's linear com-
plexity, interruptibility, and atomaticity
of language processing provide language
comprehension and generation processes
that do not compromise agent reactivity.

1 Introduction

Autonomous intelligent forces (IFORs) play an
increasingly critical role in both large-scale dis-
tributed simulations and small-scale, focused
training exercises. An IFOR is a complex agent
that requires diverse capabilities to perform at a
useful level of functionality. Since an IFOR's role
will often be to replace one or more individuals in
an engagement, the ability to communicate in nat-
ural language can be a key capability contributing
to its overall performance. An agent that is rigid
in its communicative ability may introduce a brit-
tleness into the simulation (i.e. a tendency to fail
in unexpected ways) that has nothing to do with
imperfections in strategic or tactical knowledge.
Thus, in building TacAir-Soar agents to partici-
pate in beyond-visual-range combat [Laird et al,
1995], an NL capability is needed to ensure reac-
tive, human-like performance in basic interactions
among pilot, wing, and air intercept control (AIC).

In [Rubinoff and Lehman, 1994a] we identi-
fied three main characteristics of communication
during air combat that present challenging ar-
eas of research: (1) it occurs in real-time, (2) it
must seamlessly integrate with the agent's non-
linguistic capabilities, e.g. perception, planning,
reasoning about the task, and (3) its content must
be comprehended and generated in accordance

with performance data, i.e. with all of the idiosyn-
cratic constructions, ungrammaticalities, and self-
corrections found in real language. Within the
context of these research issues, we introduced
NL-Soar, a language comprehension and gener-
ation capability designed to provide integrated,
real-time natural language processing, for systems
built within the Soar architecture [Lewis, 1993;
Nelson et al, 1994a; Nelson et al, 1994b; Rubi-
noff and Lehman, 1994b]. In this paper we concen-
trate on issues (1) and (2), exploring our progress
toward their solution using NL-Soar in Soar-based
Air-IFOR agents.

2 Demands of reactivity

The naive approach to communication between
agents, and the one available using off-the-shelf
technology, treats language as front-end and back-
end interfaces. Messages are comprehended by
a front-end module, which creates a system-
dependent representation of the message that can
be used by the other modules responsible for the
agent's behavior. Similarly, when an agent needs
to send a message, that same representation is
passed to a back-end module that generates an
output message to be directed to other agents.1

This makes language an all-or-nothing en-
deavor, the implications of which can be seen in
Figure 1. In this typical tactical air scenario, blue
is flying an intercept (1) and is actively pursu-
ing the goal of achieving its launch acceptability
region (LAR) when an incoming message arrives
(2). The message is buffered until the current goal
is achieved and blue has fired a missile (3). Next,
processing of the input begins (4); it ends some^
time after red has returned fire (5) and (6). Only
after the communiation has been understood can
blue begin its evasive maneuver (7).

It is clear that reactivity is compromised if un-
derstanding must be postponed until the current

'The approach being described here does not de-
pend in any way on the content of the message or
the style of langnage accepted and generated. Thus
it would apply equally whether the language passed is
natural language or a formal communication protocol
(such as CCSIL [Salisbury, 1995]).

33

External
events:

(2)
comm
arrives

*

(5)
red
fires

lue Agent
events:

t
begin
intercept

(1)

t
achieve
lar/fire

(3)

t
begin
comm

(4)

♦
end
comm

(6)

begin
f-pole

(7)

time

Figure 1: All-or-nothing: a communication model that compromises reactivity

External
events:

Agent
events: begin

intercept

(1)

(2)
comm
arrives

*

III! I
cl i2 c2 i3 i4...

comm
subtask

.,. mtercept
'J' subtask

n—r
red
fires

tune

ck m

t \
end achieve
comm lar/fire

(4)

begin
f-pole

Figure 2: Reactive communication: interleaving comm and non-comm subtasks

goal has been accomplished, and then is pursued
to the exclusion of all else. In particular, two cases
are cause for concern. Consider first what hap-
pens at (2) if the content of the message is rele-
vant to the situation at the time it is received. In
this case, buffering the message leads, at best, to
wasted processing in the future (when the message
has become obsolete). At worst buffering compro-
mises the decision making of the agent by preclud-
ing access to timely, necessary information. To re-
move this possibility, we could modify the control
of the agent to always attend to communication
needs first. But this would simply put us in the
second problematic situation more often.

In this second case (4), if the content of the mes-
sage is not critical, devoting processing to it rather
than other things can compromise the agent's re-
activity as well. In short, shutting out either com-
munication processes or non-communication pro-
cesses can be equally dangerous. The point, of
course, is that you can't tell which situation you
will be in until you process the message, at which
time it is too late to change your mind.2

2 Dedicating a separate, parallel process to commu-
nication might ameliorate the problem but won't nec-
essarily solve it. A separate process will be able to
comprehend or generate the message while the agent

Figure 2 gives a more desirable version of the
same task events. Again, the pilot is flying an in-
tercept (1), trying to achieve firing position when
a message arrives (2). The message is attended to
immediately, its processing interleaved with the
ongoing effort to achieve LAR (3). In this exam-
ple, the message is completely processed by the
time the pilot is in a position to fire (4), and eva-
sive maneuvers can be started immediately, well
before red returns fire.

The model in Figure 2 overcomes the problems
in the simpler model of Figure 1 by intertwining
the different strands of agent behavior at the sub-

is performing other tasks, but will have to work in
isolation, i.e. cut off from the -changing situation and
goals of the agent. To the extent that there is relevant
information that is unavailable during communication
processing, the agent may formulate interpretations or
communications that are inappropriate or out of sync
To the extent that the relevant information is commu-
nicated to the language process, parallelism is lost. In
the tactical air domain information is updated quickly,
and so an increasing proportion of CPU cycles will be
necessary to keep the two processes in sync. Thus,
to maximize reactivity, we conjecture that a separate
process for communication would be more costly and
no more effective than the method outlined in the fol-
lowing section.

34

Comprehension
Spaces

control knowledge for interleaving
top-level task operators
top-level language operators

Generation
Spaces

Task Spaces

Figure 3: An Example of the Top-state Control Model

task level rather than at the full task level. In
other words, we can view the all-or-nothing model
as a degenerate case of Figure 2, one in which the
granularity of the interleavable components is as
large as possible. As we have seen, the disadvan-
tage of choosing the maximal grain size is that the
components are too large for the agent to behave
in a timely fashion.

3 Achieving Interleavable Commu-
nication

For NL-Soar to provide a reactive, interleavable
language capability for IFOR agents, the system
as a whole must have three properties: linear com-
plexity, intermptability, and atomaticity. The first
property, linear complexity, means that processing
to understand or generate a message must take
time that is roughly linear in the size of the mes-
sage. This is necessary to keep pace with human
rates of language use. The second property, inter-
ruptability, ensures that time-critical task behav-
iors cannot be shut out by language processing
(and vice versa). The third property, atomaticity,
ensures that if language processing is interrupted,
partially constructed representations are left in a
consistent and resumable state.

To understand how NL-Soar provides the de-
sired communication model, we must first briefly
review the components out of which Soar systems

are organized. Figure 3 is a graphical representa-
tion of a hypothetical Soar system that uses NL-
Soar for comprehension and generation. Linguistic
processes, like all processes in Soar, are cast as se-
quences of operators (small arrows) that transform
states (boxes) until a goal state is achieved. The
triangles in the picture represent problem spaces
which are collections of operators and states.3 The
comprehension problem spaces contain operators
that use input from the perceptual system to build
syntactic and semantic structures on the state; the
generation problem spaces contain operators that
use semantic structures to produce syntactic struc-
tures and motor output. Note that the problem
space labelled Top is the only space connected to
the perceptual and motor systems and it is this
space that is designated by the Soar architecture;
all other problem spaces are provided by the sys-
tem designer.

The dotted lines in the figure represent Soar im-
passes which arise automatically when there is a
lack of knowledge available in the current problem
space. When an impasse arises, processing contin-
ues in a subspace until the goal state in the sub-
space is reached. Note that impasses are a general
recursive structure (a subspace can impasse into
another subspace) that gives rise to a goal/subgoal
hierarchy, or goal stack. The thick banded arrow

3 For more details on how Soar uses problem spaces,
states and operators to organize its processing see
[Laird et a/., 1987; Laird et al., 1995].

35

that overlays the impasse represents the resolu-
tion of the impasse, and the new knowledge (called
chunks) that results from Soar's learning mecha-
nism. Chunks capture the work done in the sub-
space, making it available in the superspace with-
out impasse during future processing. This means
that when a system structured as in Figure 3 is
fully chunked all of its behavior will be produced
by operators in the Top space.

We now have all the pieces to build an inter-
leavable language capability. In the following sec-
tions, we address how to achieve linearity, inter-
ruptability, and atomaticity using these compo-
nents. For the time being we will consider com-
munication only in systems where the desired be-
havior shown in Figure 2 would occur completely
within the Top problem space when fully chunked.
We call a system organized in this way, a Top-state
control model.4

3.1 Achieving Linear Complexity
Communication in an IFOR must occur in real-
time to keep pace with the flow of human events.
This is not a statement about how fast the sys-
tem must run, per se. Rather, it is a theoreti-
cal statement about how processing must occur
within the system. Although there is some vari-
ability (some words do reliably take longer to pro-
cess than other words), in general, the amount
of time taken by people is linear in the num-
ber of words in the utterance. A number of de-
sign constraints follow from this simple regular-
ity [Lehman et al., 1996], e.g. construction of the
meaning of the sentence must proceed incremen-
tally, and different knowledge sources (syntax, se-
mantics, pragmatics) must be applied in an inte-
grated rather than pipe-lined or multi-pass fash-
ion. NL-Soar provides these properties [Lehman et
al., 1991a; Lewis, 1993]. Briefly, the system relies
on Soar's notion of impasse to control the search
through its linguistic knowledge sources, and then
on Soar's learning mechanism to compile the dis-
parate pieces of knowledge into an integrated form
that can be applied directly (i.e. in approximately
constant time/word) in the future.

Figure 4 depicts the process graphically for one
type of language operator, expanding the left por-
tion of Figure 3. Consider the arrival of a new
word into the Top state and assume that the
system has not encountered the word in a simi-
lar context in the past (i.e. the system has no
pre-chunked knowledge about how to process this
word). Once the word has been attended to, the
learn-comprehension operator will be selected, af-
ter which an impasse will arise. Problem solving

TOP
attend
learn-comprehension
u-constructorl
u-constructor2...

Create-operator
new-u-constructor
return-operator

U-construct
link
snip

Generate'
try-link
try-snip

Constraint-check
check-agreement
check-number...

4 As we will see in Section 4, this is not the only
structure permitted by Soar, but it is a valid organi-
zation and the simplest place to begin.

Figure 4: Achieving linearity through learning

will continue in the Create-operator space which
will generate a symbol for a new u-constructor.
A u-constructor is a language operator that fits
the new word into the current syntactic structure
for the message. The u-constructor is composed
piecemeal in the U-construct space which per-
forms links and snips on syntactic trees based on
knowledge provided by Generate and Constraint-
check. As the goal of each subspace is achieved,
each impasse is resolved, creating chunks. Only
two kinds of chunks concern us here. The imple-
mentation of the u-constructor is contained in the
chunks created when the impasse between Create-
operator and U-construct is resolved. This means
that the syntactic tree that resulted from the se-
quential links and snips that were done in the
lower spaces will now be produced immediately
whenever this u-constructor executes. The u-
constructor itself is returned from Create-operator
to the Top space, resulting in a chunk that tells
when this u-constructor can apply in the future.
Note that the next time this word is seen in a
similar contect, this chunk will propose the new
u-constructor directly in the Top state. In other
words, once we have learned the top-level opera-

36

tor, no impasse will occur. Instead, the (possibly
lengthy) problem solving that took place in the
subspaces has been compiled into a single Top-
space operator that executes directly to build the
relevant syntactic structure on the Top state.

Figure 4 shows how the application of gen-
eral knowledge about syntax is contextualized and
made efficient. A similar story can be told about s-
constructors, the Top-space operators that fit the
new word into the semantic and discourse struc-
tures maintained on the Top state. Thus, once
behavior is fully chunked, the arrival of a message
results in only a small number of Top operators per
word, the linear complexity we were after. Equally
important, the language process itself is now rep-
resented in the Top space in terms of more finely-
grained operators (u- and s-constructors) that cre-
ate the opportunity for interleavability. On the
generation side, of course, there is a different task
decomposition producing a different set of Top-
space operators, but the principle is the same.

3.2 Achieving Interruptability
In Soar, agent behavior is produced by the appli-
cation of operators to a state. Moreover, the ar-
chitecture defines the application of an operator as
a non-interruptable unit of work. In other words,
once an operator has been selected for application,
all the state changes associated with that operator
are guaranteed to be made before any other opera-
tor is selected. What does this mean for NL-Soar?
In short, it means that the Top-level language op-
erators dictate the granularity of the interleavable
components. To anchor the point in the context of
Figure 4, once a u-constructor exists, we cannot in-
terleave changes to the syntax tree with other non-
linguistic tasks. Put more strongly, once the u-
constructor is selected, all other subtasks are shut
out for the duration of its application. In addition,
if the Top state changes during the application of
the u-constructor (via perception), those changes
are effectively invisible until the u-constructor's
state changes have been made.5

How is this situation different from the one in
Figure 1, where lack of interruptibility meant re-
activity was diminished to the point of inviting
wasted work, if not disaster? The difference here
is that the granularity of NL-Soar's operators is
small enough to allow interruptibility below the
full task level. The current scheme separates the
work of attention from work done to the syntac-

sThis is an overstatement. In fact, it is possible to
encode knowledge in Soar in such a way that it is tied
only to the state, not to any particular operator. Such
knowledge will lead to state changes regardless of what
operator is being applied. Since most task knowledge
is tied to task operators, however, the discussion above
is still a useful way to think about what's going on.

tic tree (u-constructors) from work done to the
semantic and discourse models (s-constructors).
Thus, the current comprehension capability al-
lows for interruption between each set of state
changes. Note, however, that we could have made
this choice differently. We could, for example,
build both syntactic and semantic structures in
the impasse under the learn-comprehension op-
erator. The resulting Top-space comprehension
operator would effectively bundle all of compre-
hension into a single operator.6 Alternatively, we
could make link and snip the Top operators, giv-
ing an even finer grain. Although it is clear that
the architecture permits a wide range of choices,
choosing the right granularity is not a wholey un-
principled exercise. In general, the more work en-
compassed by a Top operator, the more specific
will be the conditions under which it can apply.
The more specific the conditions the less transfer
of the knowledge to new situations and the more
learning events will be required to get fully chun-
ked language behavior. On the other side, the less
work encompassed by a Top operator, the more
operators per word there will be, until, eventually,
the number will reflect some non-linear quantity
(e.g. the size of the parse tree). In Section 4, be-
low, we demonstrate how the operator granularity
we have chosen allows both transfer and interleav-
ing while maintaining linearity.

Now that we have language operators of a size
that allows interruptibility, the next question that
needs to be addressed is: how do you decide which
type of operator, linguistic or non-linguistic, to
select next? Many control schemes are possible,
ranging from random selection to a complete par-
tial ordering over all the operators in the system,
to always attending to communication first (or
last). In integrating NL-Soar with TacAir-Soar we
will use random selection for its simplicity. What
is important to remember, however, is that under
Top-state control the selection decision is made on
an operator by operator basis, not task by task.

3.3 Achieving Atomaticity
Recall that atomaticity ensures that if language
processing is interrupted, partially constructed
representations are left in a consistent and re-
sumable state. Given our discussion above,
it would seem that the architecturally enforced
non-interruptability of operators would guarantee
atomaticity as well. This is certainly true if all of
the language behavior is impasse-free. Suppose,
however, that the system is in the middle of learn-
ing a new u-constructor or s-constructor, as in Fig-
ure 4, when state changes create a preference for
a non-linguistic Top-space operator. In this case,

6 An early version of NL-Soar did, in fact, use this
scheme [Lehman et al., 1991b].

37

External
events: w

ParrotlOl
events:

(D
bogey
detected

set heading
and turn rate

report
contact

(2) id as
bandit

(3)

check for
commit

i—r
open notice

discourse fo^
in missile ^ „^g gM-rat-,

(S) discourse
range

fly to
waypoint

(6)

. dm«

compute start turn
turn (8)

construct (7) realize
summons subject

Figure 5: The lead TacAir agent composes a message while tracking a threat and flying

once the operator currently being applied in the
lowest subspace is finished, the task operator will
be selected in the Top space and the language goal
stack will collapse. Can we be sure that we have
been left in a consistent state so that language
processing can be smoothly resumed?

The answer is yes because the design of NL-soar
ensures that no changes are actually made to the
language data structures on the Top state until the
u-constructor is returned. Look again at Figure
4. The only operator that can result in changes to
the Top state is Create-operator's return-operator.
But if it is being applied when a preference is cre-
ated for a Top-space task operator, then we know
it will complete, the results will be returned, and
the u-constructor proposal chunk will be built. If
the subspace operator is not the return-operator,
no results will be returned from the top-most im-
passe and no proposal chunk will be built for the
u-constructor. Observe, however, that the con-
ditions that led to the learn-comprehension oper-
ator in the Top space may well still obtain. So
once the task operator has been applied, language
may be resumed. Since no u-constructor was built,
the system will have to rebuild the goal stack
to continue. In practice, the situation is not as
bad as it sounds because chunks may have been
built in the subspaces during the previous learn-
comprehension processing that were not specific
to the particular u-constructor. These chunks will
transfer to the current situation and the impasses
that created them will be avoided.

4 Bringing it all together in TacAir-
Soar

In Section 2 we argued that a communication ca-
pability for IFORs had to have three properties:
linear complexity, interruptability, and atomatic-
ity. In the previous section we introduced the
Top-state control model in which whole tasks are
interleaved on an operator-by-operator basis and
communication is just another task. One of the

interesting characteristics of systems organized as
in Figure 3 is that the goal stack is never shared
across linguistic and non-linguistic tasks; the need
to understand or produce a message pulls the sys-
tem out of a task goal stack. As a result, Top-state
task operators, like the Top-state language oper-
ators, tend to represent subtasks of fairly short
duration.

In contrast, systems like TacAir-Soar are com-
posed of a Top task operator of very long dura-
tion, and a goal stack that reflects many levels
of abstraction of that task. Each level stays ac-
tive as long as it is being carried out. In partic-
ular, TacAir uses Soar's Top state to keep track
of the "execute-mission" task, which stays active
for the entire simulation. Under this will be a
stack of sub-tasks, such as "mig-sweep", "inter-
cept", "employ-weapons", and so on, each repre-
senting a more detailed view of what the agent is
currently trying to do. Much of TacAir's knowl-
edge of its current situation and goals is stored in
sub-states associated with these subtasks, not on
the Top state.7 Thus, if TacAir switched to lan-
guage in its Top state, it would lose much of this
knowledge. Clearly, TacAir-Soar is incompatible
with the Top-state control model outlined above.
To understand how to modify Top-state control
without sacrificing linearity, interruptibility and
atomaticity, we must answer the question: what
role, exactly, does the Top state play in maintain-
ing each property?

For linear complexity, the role played by the
Top state is simply a place to apply the so-called
Top-state operators. In reality, what is critical
for linear complexity is that there is an effective
procedure for building the top-level language op-
erators, and that only a small number of them are
necessary for each word in the message. For in-
terruptability and atomaticity, the Top state does
play a more central role. Specifically, it must be
the place where Top-level language operators leave

7 A fuller description of TacAir-Soar can be found
in [Laird et d., 1995].

38

(9)
"panotl02"

External
events:

ParrotlOl
events:

set altitude

■ay

set speed "this"

start
assume

bogey fiied

External
events:

Parrotl02
events:

racetrack

(14)
"parrotl02"

set heading
and turn rate

±

fly to
racetrack

fly to
waypoint

(11)
"is"

t
■ay

set heading
and turn rate

start achieve
JJ attend *■**

«ay
(10)

"this"

realise
object

compute (j2i
turn '
direction

tune

-is"

D-con2
•-coa6 (iß)

attend
this achieve

compute proximity
turn

"1
■-cons12

^«-con8

. tune

direction (17)

Figure 6: Figure 5 continued: Pilot continues to talk as wing begins to listen

their results because it is the only state that is
guaranteed to still be in the goal stack when lan-
guage processing resumes. Thus, where top-level
language operators are applied is immaterial as
long as they leave their results on the Top state
where they can be found whenever, and wherever,
language processing resumes.

Separating the question of where top-level lan-
guage operators are applied from the question of
where they leave their results allows us to define a
variety of virtual Top-state control schemes. The
simplest one, and the one we use when integrating
NL-Soar with TacAir agents, is to interleave lan-
guage operators with whatever task operators are
available in the lowest problem space in the goal
stack. Because the goal stack grows and shrinks
over time, the interleaving of communication will
take place more or less throughout the range of
non-linguistic subtasks. The simplicity of the in-
tegration is extended by allowing the architecture
to decide randomly between language and non-
language operators whenever both types are ap-
plicable in the current situation.

Figures 5 through 7 capture a portion of the
behavior of two TacAir-Soar agents running with
a fully-chunked NL-Soar under virtual Top-state
control.8 In the scenario depicted, two pilots fly

'Requiring NL-Soar to "learn while doing" would
be equivalent to expecting the pilot to learn the do-
main language while flying the plane in battle. Con-
sequently, we use off-line training to allow NL-Soar to
leaxn from experience in a non-real-time setting. This
gives the system the time it needs to integrate its dis-

F14s as a section with a single red plane flying
against them. ParrotlOl is the lead and Parrotl02
is the wing. The timelines in the figures show
the operators that each agent executed in a par-
ticular engagement, together with those events in
the external world that affect or depend on their
behavior. Language operators are indicated via
bold-face. For simplicity, the representation does
not try to preserve the goal-subgoal relationship
of the task operators.

In the time prior to the first event shown in
Figure 5, the two planes have begun to fly in a
racetrack configuration. The portion of behavior
we are interested in begins when the lead notices
the bogey (1), and must communicate the relevant
information to its wing. The report-contact oper-
ator (2) posts a communicative goal on the Top
state indicating that the agent wants to say some-
thing. Interleaving begins (somewhat unevenly
due to the random control scheme) at (3). First,
three task operators are executed in which the
agent determines that the bogey is in fact a ban-
dit, decides to check whether the commit criteria
have been satisfied (they have not), and notices
that the bandit is within missile range. Then, at
(4), language operators begin to compose the mes-
sage according to communication doctrine. The
first step in any lead-wing communication is the

parate knowledge sources into the top-level operators
discussed in Section 3.1. It is this highly compiled
form of language knowledge that models an experi-
enced pilot and provides real-time language behavior
on-line.

39

External
events:

ParrotlOl
events:

External
events:

Parrotl02
events:

"parrotlOl" "have"

t ♦
«ay
t " I i i t ♦ t M M I construct realize I say say I

I assertion subject I I I
pause

continue I construct
discourse! assertion subject

realize say realize
verb object

(19)
"contact"

t
say

.tune

realize
object

"parrotlOl"

J
attend

is
u-conl5

.. - . n-conl8 attend
parrotlOl

"I" "have" contact

i—nrm
■-con26

s-con22 pause
attend attend
pause z

(20)

.time

u-con2

attend
have

u-cons2fi
(21)

Figure 7: Figure 6 continued: completion of summons generation

exchange of callsigns, here, the sentence Parrotl02
this is ParrotlOl. This is a domain-dependent in-
stance of the more general class of utterances we
call summons (for example the telephone exchange
John? It's Jill.) The summons is constructed
piece by piece using top-level generation operators
(in boldface). Figure 5 shows this linguistic pro-
cess interleaved with operators that contribute to
situation awareness (5) and operators that fly the
plane (6), (7), and (8).

Figure 6 continues the timeline for ParrotlOl
and introduces Parrotl02 at the point just be-
fore the first word of the summons arrives into the
agent's input buffer. The timelines are aligned by
the linguistic output of ParrotlOl and the linguis-
tic input of Parrotl02.

To this point in the scenario, the wing has sim-
ply been flying a racetrack with the lead. At (9)
ParrotlOl outputs the wing's callsign in the upper
timeline. Note that this is done even though the
construction of the remainder of the summons is
still being interleaved with non-linguistic subtasks
(10) through (12); both generation and compre-
hension are incremental. Meanwhile, shortly af-
ter Parrot 102 has begun to turn (13), the call-
sign is heard (14). The lower timeline continues
with comprehension of the first few words of the
summons ((16) and (18)) interleaved with oper-
ators that keep the wing in formation ((15) and
(17)). Note that the s- and u-constructors for the
word this (18) fire after the word is has already
been heard. This is partly because the lead's mes-
sage is coming out quickly, and partly because the
wing's attention has been focused on flying the
plane. The input buffer that holds unattended
speech has a decay rate; as in people, if speech

goes unattended long enough (as it may if the pi-
lot is in a stressful situation), it simply disappears
from the buffer.

Figure 7 continues the interchange to the point
that ParrotlOl outputs the final word of the sum-
mons (19). There is no interleaving in this por-
tion of the trace because both pilots are simply
flying the long leg of the racetrack where no task
operators are proposed. Notice that by the time
the lead has begun the second portion of the sum-
mons, the wing has caught up on the comprehen-
sion side (19). The rapidity with which I have
a contact emerges, however, once again results in
buffered input for Parrotl02 (21). Thus, linguis-
tic processing continues in the wing agent after
the lead has already begun to wait for a reply (not
shown). As a final observation, note that the same
u-constructor that processes ParrotlOl in Figure 6
also processes I'm Figure 7 (u-constructor2). This
is an example of where the granularity of the top-
level operators affords some transfer of syntactic
processing despite the difference in semantics (s-
constructor6 vs. s-construct26).

5 Conclusions

The ability to communicate in natural language
can be a key capability contributing to an IFOR's
performance in both simulation and training exer-
cises. In this paper we have discussed how the de-
sign of NL-Soar uses linear complexity, interrupt-
ibility, and atomaticity of language processing to
provide a language capability that does not com-
promise reactivity. What we have not discussed,
however, is the third area of interest identified in

40

[Rubinoff and Lehman, 1994a]: performance in ac-
cordance with empirical data from pilots in real-
life simulations. Our continued work, therefore,
will focus on making the NL-Soar integration more
robust, including handling linguistic constructions
specific to the domain and allowing for the inter-
ruptions and self-corrections that necessarily come
with real language use.

6 Acknowledgement

This research was supported under subcontract
to Carnegie Mellon University from the Univer-
sity of Michigan, as part of contract N00014-92-
K-2015 from the Advanced Systems Technology
Office (ASTO) of the Advanced Research Projects
Agency (ARPA) and the Naval Research Labora-
tory (NRL). The authors would like to thank BMH
Associates, Inc. for their technical assistance, and
gratefully acknowledge the system-building sup-
port of Greg Nelson.

References

[Laird et al., 1987] John E. Laird, Allen Newell,
and Paul S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence,
33:1-64,1987.

[Laird et al., 1995] John E. Laird, W. Lewis John-
son, Randolph M. Jones, Frank Koss, Jill F.
Lehman, Paul E. Nielsen, Paul S. Rosen-
bloom, Robert Rubinoff, Karl Schwamb, Milind
Tambe, Julie Van Dyke, Michael van Lent, and
III Robert E. Wray. Simulated intelligent forces
for air: The soar/ifor project 1995. In Pro-
ceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representa-
tion, 1995.

[Lehman et al, 1991a] J. Fain Lehman, R. Lewis,
and A. Newell. Integrating knowledge sources in
language comprehension. In Proceedings of the
Thirteenth Annual Conferences of the Cognitive
Science Society, 1991.

[Lehman et al., 1991b] J. Fain Lehman, R. Lewis,
and A. Newell. Natural language comprehension
in soar: Spring 1991. Technical report, School of
Computer Science, Carnegie Mellon University,
CMU-CS-91-117,1991.

[Lehman et al., 1996] J. Fain Lehman, R. Lewis,
and A. Newell. NL-Soar: Architectural influ-
ences on language comprehension. In Cognitive
Architecture. Ablex Press, 1996. in press.

[Lewis, 1993] R. L. Lewis. An Architecturally-
based Theory of Human Sentence Comprehen-
sion. PhD thesis, Carnegie Mellon University,
1993.

[Nelson et al, 1994a] G. Nelson, J. F. Lehman,
and B. E. John. Experiences in interruptible
language processing. In Proceedings of the 1994
AAAI Spring Symposium on Active NLP, 1994.

[Nelson et al, 1994b] G. Nelson, J. F. Lehman,
and B. E. John. Integrating cognitive capabil-
ities in a real-time task. In Proceedings of the
Sixteenth Annual Conference of the Cognitive
Science Society, 1994.

[Rubinoff and Lehman, 1994a] R. Rubinoff and
J. F. Lehman. Natural language processing in
an ifor pilot. In Proceedings of the Fourth Con-
ference on Computer Generated Forces and Be-
havioral Representation, pages 97-104,1994.

[Rubinoff and Lehman, 1994b] R. Rubinoff and
J. F. Lehman. Real-time natural language gen-
eration in nl-soar. In Proceedings of the Sev-
enth International Workshop on Natural Lan-
guage Generation, 1994.

[Salisbury, 1995] M. Salisbury. Command and
Control Simulation Interface Language (ccsil):
Status update. In Proceedings of the the 12th
Distributed Interactive Simulation Workshop,
1995. Sponsored by STRICOM and the Insti-
tute for Simulation and Training (1ST) at the
University of Central Florida.

7 Biographies

Jill Fain Lehman is a research computer scien-
tist in Carnegie Mellon's School of Computer Sci-
ence. She received her B.S. from Yale in 1981,
and her M.S. and Ph.D. from Carnegie Mellon in
1987 and 1989, respectively. Her research inter-
ests span the area of natural language processing:
comprehension and generation, models of linguis-
tic performance, and machine learning-techniques
for language acquisition. Her main project is NL-
Soar, the natural language effort within the Soar
project.

Robert Rubinoff is a postdoctoral research fel-
low in Carnegie Mellon's School of Computer Sci-
ence. He received his B.A., M.S.E., and Ph.D.
from the University of Pennsylvania in 1982,1986,
and 1992, respectively; his dissertation research
was on "Negotiation, Feedback, and Perspective
within Natural Language Generation". His re-
search interests include natural language process-
ing, knowledge representation, and reasoning. He
is currently working on natural language genera-
tion within the Soar project.

Julie Van Dyke is a Research Programmer work-
ing on language comprehension in NL-Soar. She
is also working toward an MS in Computational
Linguistics with a focus on modeling language ac-
quisition.

41

Intelligent Computer Generated Forces for Command and Control

Paul E. Nielsen
Department of Electrical Engineering and Computer Science

University of Michigan

1101 Beal Ave., Ann Arbor, MI 48109-2110

nielsen@eecs.umich .edu

The clever combatant looks to the effect
of combined energy, and does not require
too much from individuals.

Sun Tzu The Art of War

1. Abstract

The effectiveness of intelligent computer gener-
ated forces is limited by their ability to closely
coordinate their actions within the overall battle-
field situation. We have developed intelligent com-
mand and control agents which monitor large sec-
tions of the battlefield and deploy other forces for
increased effectiveness. These agents have been
demonstrated in the air to air, close air support,
and air strike domains.

2. Introduction

Our goal is the development of intelligent forces
(IFOR's), computer agents which are functionally
indistinguishable from human agents in their abil-
ity to,interact with the synthetic environment.
The Soar/IFOR consortium, involving the Uni-
versity of Michigan, Information Sciences Insti-
tute of the University of Southern California, and
Carnegie Melon University, is developing IFORs
for all military air missions: air to air, air to
ground, air supply, anti-armor attack, etc. IFORs
must have many capabilities to be successful" in-
cluding: extensive knowledge, real-time reactiv-
ity, goal-directed problem solving, and planning.
Additionally, they must coordinate their activities
with other friendly forces (Laird et al., 1995a).

To fully support very large scale battle field sim-
ulations, such as those envisioned for STOW-97,
intelligent computer generated forces cannot act
independently; but rather, they must coordinate
their efforts for increased effect just as humans

do. This requires a means and a method for co-
ordination, the ability to convey coordination in-
formation, and the ability for large scale situation
assessment. In military parlance this is commonly
referred to as command, control, communications,
and intelligence (C3I).

This paper discusses our current state of develop-
ment of intelligent, realistic C3I agents for simu-
lation in the air domain. These agents have been
implemented using ModSAF (Calder et al, 1993)
and the Soar/ModSAF interface (Schwamb et al,
1994).

The remainder of this introductory section pro-
vides an overview of the C3I domain and some
motivation for this work. Section 3 has a descrip-
tion of the C3I agents implemented by this project
to date. Section 4 discusses the general responsi-
bilities of each agent and goes on to show how our
agents demonstrate each of the C3! functions. Sec-
tion 5 provides an extended example of the inter-
action between multiple C3I agents and. a section
of planes flying close air support. Section 6 dis-
cusses research and open problems. Finally, sec-
tion 7 provides general discussion and conclusions.

2.1. Domain Overview

Previous work in computer generated forces has
either focused on individual agents working in rel-
ative isolation or groups of agents which may be
treated as a whole (Rao et al., 1994). A notable
exception is (Ballas et al., in press). These ap-
proaches avoid the problems of C3I by allowing
human guidance, but when the agents number in
the tens of thousands, finding enough people to
control them is infeasible.

In 1994, the Soar/IFOR project was tasked to pro-
vide automated pilots for all air vehicles and mis-

42

sions in support of STOW-97. (See (Laird et al.,
1995b) for an overview of the current state of this
project.) In order to accomplish this task we
needed to extend the scope of the project to in-
clude those interactions necessary between pilots
and controllers, even if they are not airborne. For
example, orange agents are at a severe'disadvan-
tage if they cannot rely on ground based radar
control (GCI) to track threats outside the limited
scope of their own radar.

The most C3I intensive missions we have imple-
mented to date are air to air combat and close
air support (CAS). In the air to air domain, the
controller may be responsible for maintaining a de-
fensive perimeter around the carrier battle group,
locating potential threats, confirming that an un-
known aircraft is a threat, providing timely up-
dates until friendly planes have radar contact,
then issuing additional information in response to
queries.

While air to air combat has a single (or small
number of) controllers, in contrast, the close
air support domain demonstrates a wide variety
of controllers. In the CAS domain, the attack
planes must have detailed integration with multi-
ple agents because of close proximity between tar-
gets and friendly forces. These controllers commu-
nicate with the planes (locating targets and decon-
flicting) as well as amongst themselves (requesting
missions and allocating forces.)

2.2. Motivation

The primary motivation for doing this work is to
develop realistic C3I agents. The IFOR C3I agents
should be indistinguishable from human agents
performing similar functions. This involves be-
lievable interacts with the simulator as well as
interactions with other agents and humans at a
natural level. By basing IFOR agents on Soar, a
theory of cognition (Laird & Rosenbloom, 1994;
Laird et al, 1987; Newell, 1987), and modeling
not only the externally observable behavior, but
plausible thought processes which are necessary to
produce realistic behavior, we intend to overcome
both dumb, canned responses and implausible, su-
perhuman responses.

The second motivation for doing this work is ef-
fectiveness. Without C3I agents our automated
pilots have only limited ability to sense and in-
teract with their environment. Enemy agents can

sneak up behind them or fly around them. In addi-
tion the automated pilots have only limited ability
to change their mission. Without the large scale
perspective provided by the controller, they don't
even realize that there might be a need to change
their mission.

Adding C3I can increase the level and types of
applications for military simulation. As battle-
field simulators become more realistic, we want
to make them available for more advanced pur-
poses. The major use of air simulators to date is
in pilot training. By providing intermediate level
controllers, we expect to make simulation usable
not only in pilot training, but also in training hu-
man controllers to interact with and control these
controllers.

Finally, we wish to study human cognition and
the ability to model it in Soar. C3I provides a
new domain for this research which suggests more
knowledge and exhibits different types of knowl-
edge than that used by aircraft pilots.

3. C3I Agents

In order to increase realism and promote playa-
bility at various levels, we base C3I on existing
techniques currently in use by military organiza-
tions and embody them in specialized agents cor-
responding to military controllers. Thus there is
a direct one to one mapping between our agents
and humans.

Currently, we have operational versions of the fol-
lowing C31 agents:

• Air Intercept Controller (AIC) which assigns
planes to stations, spots threats, and provides
information about enemy planes. The AIC
is airborne, situated in a plane with a large
radar, such as an E-2C.

• Ground Controlled Intercept (GCI) performs
the same sort of mission as an AIC but is
ground based and immovable.

• Forward Air Controller (FAC) which locates
targets and provides final directions for close
air support. Forward air controllers may be
either ground based or airborne (FAC(A)).

• Direct Air Support Center (DASC) which as-
signs aircraft to missions, potentially alters
the missions, and hands off attack missions

43

to the FAC. The DASC is ship based, usually
on the aircraft carrier.

• Tactical Air Direction Controller (TAD) di-
rects air operations within the Amphibious
Operations Area (AOA) prior to the estab-
lishment of a DASC. The TAD is also ship
based and may be co-located with the DASC.

• Fire Support Coordination Center (FSCC)
determines the type of support to utilize
(CAS, artillery, naval gunfire). If CAS
is determined it generates a Joint Tactical
Airstrike Request and coordinates CAS re-
quests with the DASC. The FSCC is ground
based within the AOA.

• Tactical Air Command Center (TACC) which
provides air traffic control, routing, and de-
confliction within the AOA. The TACC is
ground based and usually co-located with the
FSCC.

In the following section we explore how agents
demonstrate the capabilities necessary for coordi-
nating the behaviors of multiple agents.

4. Responsibilities

In addition to the specific responsibilities of each
agent given above there are several general re-
sponsibilities associated with C3I agents. These
responsibilities are broken out into separate top-
ics, but it must be realized that to work effectively
all of these activities must be going on simultane-
ously.

4.1. Command

C3I agents are responsible for mission initiation
as well as tracking and modifying the mission as
it develops. Typically the planes will have a pre-
briefed mission, but often this mission will need
to be changed or replaced entirely as the battle-
field situation developed. Our command agents
can change almost every aspect of a mission in-
cluding assignment of individual CAP1 stations,
routes, target times, and the final targets.

In order to effectively carry out their command
function, C3I agents need to have a command
organization. We've observed two different com-
mand organizations for C3I agents.

1 Combat Air Patrol

In the air to air domain command is centralized.
Either the AIC or the GCI are responsible for all
air traffic. These agents provide continuous con-
trol and information for many sections of planes.
Though there may be multiple controllers acting
at the same time they have clearly separated du-
ties, and there is very little interaction.

In contrast, in the CAS domain command is de-
centralized. As the planes fly through different
regions they are directed by multiple controllers,
all of which are responsible for the ultimate suc-
cess of the mission. Though there is still a chain
of command, because of limited numbers of radios
and limited broadcast range the planes may not be
in continuous contact with any single controller.

The controllers in CAS need to coordinate not
only the planes, but also themselves. The TACC,
DASC, FSCC, and FAC have to form a distributed
control network in which mission requests and as-
signments are propagated through the network.

4.2. Control

The mission of a controller is to continually assess
the situation then allocate, or re-allocate, forces
for maximum effect.

The combined knowledge of overall mission ob-
jectives and threat detection makes controllers
uniquely capable of resource allocation. They
need to assess the resources available and when
future resources might become available, balanced
against current and potential threats. They must
synchronize their own forces, and their efforts with
respect to other controllers. Higher level con-
trollers have to trade off the utility of multiple
potential assignments for maximal effectiveness,
while low level controllers can only shout louder
hoping to increase the priority of their request for
resource allocation.

Poorly coordinated attacks can be weak and in-
effective. One way C3I agents coordinate is by
synchronizing attacks through timing constraints.
For example, in the CAS domain, when bombing
in tight proximity to friendly troops, timings must
be accurate to plus or minus ten seconds to avoid
interference with friendly troops.

To accomplish this C3I agents must be capable of
real-time reactive planning. Both threats, friendly
forces, and messages from other controllers may

44

arrive at any time. The overall battle plan must be
incrementally supplemented with new information
so that we seize opportunities and knowingly avoid
or confront risks.

Soar provides several capabilities which help man-
age these real-time asynchronous inputs. First,
the decision of what to do next is handled through
production rules. During each decision cycle all
relevant rules are tested and allowed to fire in par-
allel. Thus the sequence of execution is not fixed.

The real-time is requirement handled by making
the speed of operator execution comparable to
experimental results in humans (Newell, 1990).
Since this can only guarantee soft real-time, our
agents will react quickly, but may fail to react
quickly enough when faced with overly complex
situations, just as people do. Limiting the number
of available choices increases the speed of decision
making. Soar uses operator subgoaling to provide
a context for focusing decisions on information rel-
evant to the current situation. For example, when
under attack and bugging out an E-2 might not
be overly concerned with planning the course to
its CAP station.

Mt£KAtt»3>,a&CAU.CAS

UKOmam "2.0 ~0"i8

MESSJOH cooes

ouea «*«"«

1 IP ViflUfrft

i rmr. U-t-

3L csr .„„ fi-f
A TCT-HPV *J5P

asm

CHANGE .

ABORT

6tM(

cut. rfjffo*> oN_gfc*£*_

. WGUR

. HK

.MS.
on 8.KW?

6, TCTDCOVnOH V« ZAff* s»o
7. MA«: THIS _ lAfS*. tfeps
i. HOBWUES »rfv' ya«o/ti

»K«S SOortf TO jsoeD, T«£N £OM6#fi

10.KK-TCTJRC . MAC/BCKGWD
UUBOfTSTODT .METEK/TCTGRJD
».amenfw

itnr/^B>____^l22_ _«W/

KBCVDS/mA.,

Figure 1: Nine/twelve line brief

Another way to increase military effectiveness is
to decrease the interference from one's own forces.
In actual combat (as opposed to simulation) this
will have serious morale consequences. The de-
confliction duties we've implemented range from
air traffic control to route planning to explicitly
informing the plane of the location friendly forces.

4.3. Communication

The nature of communication is that commands
must be brief, and commands must be clear. C3I
agents must communicate relevant information in
a timely and effective manner. Communication
can range from simple (e.g., "proceed as briefed"
or "negative") to very complex, such as a nine line
brief shown in figure 1.

The domain of military communication is well re-
searched, and the military jargon provides a form
of communication which is brief yet maximizes
the communication of necessary knowledge with-
out undue overhead. We attempt to model C3I us-
ing standardized forms, realistic dialog from actual
communications of former pilots, and examples
from training manuals whenever possible. We be-
lieve that by making communication explicit and

based on human communication we can offer an
approach to better human interaction and easier
evaluation of the results of a simulation.

The approach used by the military, and the ap-
proach we've adopted, is to use a shared format
for all communication. Complex commands use
a standard template to reduce transmission time
and ensure all relevant information has been com-
municated.

To compensate for lost messages and electronic in-
terference we repeat messages until confirmation
is forthcoming . The receipt of commands must
be confirmed through "roger," or if some action
is necessary, by the recipient either "wilco" (will
comply) or "negative" (will not comply).

While we have yet to incorporate a general nat-
ural language understanding system with TacAir-
Soar, the commands used are based on the actual
English communications used between controllers
and pilots in similar situations. This makes it eas-
ier to understand the behavior of the IFOR com-
manders, and allows human communication with
the IFOR commanders. In order to communicate
with other CGFs we will be adopting CCSIL pro-

45

tocols (Salisbury, 1995).

4.4. Intelligence

The most important responsibility of an air con-
troller is to locate, identify, and track threats.
"Timely interception is totally dependent of two
factors: early detection and positive identifica-
tion" (Gunston & Spick, 1983). The need to track
the threat arises because enemy agents are emi-
nently uncooperative. Some early failures of our
fighter agents acting alone arose because human
pilots would feign an attack from one direction,
then beam or drop and attack from a different di-
rection. The more powerful radar capabilities of
the AIC and GCI makes our agents less vulnerable
to these tactics.

Each agent has limited capability. Controllers are
limited by weapons,2 maneuverability, and speed
when compared with the targets they must defend
against. To compensate for this lack of ability
they provide greater situational awareness either
through proximity (e.g., a FAC) or superior equip-
ment (such as an E-2's radar). They must use
this awareness to perform continuous intelligence
gathering. Without this information even a vet-
eran pilot may be defeated by a poorly equipped
pilot of lesser training.

5. Example scenario

Figures 2 through 8 illustrate some of the interac-
tion between command agents and combat aircraft
during a close-air support mission. All of this di-
alog is taken from a simulation run of a close air
support mission.

Our agents include a section of F-14d fighters
(lead by Falconl4), a TACC (Icepack), an FSCC
(Bronco), a DASC (Mustang) and a FAC (Rat-
tler). Each utterance is preceded by the name of
the speaker and the radio frequency used for this
communication. The frequencies are color coded
to match the encryption scheme used in the com-
munication.

In figure 2 the two planes check into the amphibi-
ous operations area (AOA) with Icepack. The ex-
act form of the plane's initial check-in message is
specified in the SPINs (SPecial INstructions) and
may vary across scenarios, but will convey the es-

Falconl4 (white)
Icepack (white):
Falconl4 (white)
Falconl4 (white)
Falconl4 (white)
Falconl4 (white)
Falconl4 (white)
Falconl4 (white)
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Icepack (white):
Falconl4 (white):

: Icepack this-is Falconl4
go-ahead

: Falconl4
: mission-number 20-059
: proceeding-to Elmer
: angels 32
: time-on-station 1+30
: checking-in-as fragged
roger
Falconl4
radar-contact
cleared-to-enter-aoa
proceed-as-briefed
maintain angels 32
check-in-with Mustang
on orange
at Tiger

: wilco

2Tliough, at least one E-2 pilot considers every friendly
plane in the sky his weapon.

Figure 2: Mission checks in to AOA

sential information 1) who I am, 2) where I am,
and 3) what am I doing here.

Icepack recognizes this message and realizes that
they are both friendly and supposed to be there.
Icepack locates their corresponding blip on radar,
gives them permission to enter the AOA, and does
not change their mission.

Our TACC is capable of some low level air traffic
control. In this case it consists of assigning unique,
even altitudes to inbound flights, while outbound
flights are expected to maintain odd altitudes.

Finally, Icepack hands off control to the next
agent, Mustang, at a pre-briefed radio setting.

Rattler (silver): Bronco this-is Rattler
Rattler (silver): immediate-mission
Rattler (silver): target-is tank
Rattler (silver): target-location-is
Rattler (silver): x 127000
Rattler (silver): y 27500
Rattler (silver): target-time ASAP
Rattler (silver): desired-results destroy
Rattler (silver): final-control FAC Rattler
Rattler (silver): on green
Bronco (silver): roger Rattler

Figure 3: FAC sends tactical air request to FSCC

46

In figure 3 Rattler finds itself in the line of un-
friendly fire and radios back to the FSCC that it
needs support immediately. In addition it provides
information sufficient for the FSCC to initiate a
Joint Tactical Airstrike Request (JTAR).3

The JTAR includes target type, location, time,
and desired results. Note that Rattler has elected
to be the forward air controller for the mission
and direct the final bombing run. The FSCC sup-
plements this information with coordination and
mission data.

Bronco (orange): Mustang this-is Bronco
Bronco (orange): request-number 28-59
Bronco (orange): immediate-mission
Bronco (orange): target-is tank
Bronco (orange): target-location-is
Bronco (orange): x 127000
Bronco (orange): y 27500
Bronco (orange): target-time ASAP
Bronco (orange): desired-results destroy
Bronco (orange): final-control FAC Rattler
Bronco (orange): on green
Mustang (orange): roger

Figure 4: FSCC radios DASC

In figure 4 Bronco (the FSCC) has determined
that close air support is the logical response,
and transmits the necessary information from the
JTAR to Mustang (the DASC). If this were more
realistic, the request would be transmitted in hard
copy form rather than over the radio, but we are
constrained with the information exchanges allow-
able through ModSAF.

In figure 5 the lead plane is approaching a holding
point and checks in with Mustang. The plane's
check in sequence has the same form as seen in
figure 2.

At this stage Mustang alters the mission from its
pre-specified course. Even though the planes have
a pre-briefed mission, Mustang determines that
the new mission is more important and redirects
the flight to a new contact point (Chevy) and a
new controller (Rattler) for further details.

Falconi4 (orange)
Mustang (orange):
Falconi4 (orange)
Falconl4 (orange)
Falconl4 (orange)
Falconl4 (orange)
Falconl4 (orange)
Falconl4 (orange)
Mustang (orange):
Mustang (orange):
Mustang (orange):
Mustang (orange):
Falconl4 (orange)

: this-is Falconl4
go-ahead

: Falconl4
: mission-number 20-059
: proceeding-to Tiger
: angels 32
: time-on-station 1+30
: checking-in-as fragged
Falconl4 this-is Mustang
proceed-as-briefed
check-in-with Rattler
on green at Chevy

: wilco

3 We've elected not to include an example of a Joint
Tactical Airstrike Request because of its detailed nature.
The nine/twelve line brief of figure 1 accounts for less than
one sixth of its content by size.

Figure 5: Mission checks in with DASC

Mustang (green): Rattler this-is Mustang
Rattler (green): go-ahead
Mustang (green): expect-cas-mission 20-059
Mustang (green): call-sign Falconl4
Mustang (green): at Chevy
Rattler (green): roger

Figure 6: DASC contacts FAC

Figure 6 shows Mustang informing Rattler that
help is on the way, who they are, and where to
expect them. Rattler has no radar and will as-
sume a plane approaching from that direction is
the expected mission.

In figure 7 the planes finally arrive at the contact
point for Rattler and check in according to the
format seen in figure 2.

Figure 8 shows Rattler delivering a nine line brief
similar to that shown in figure 1. This is an in-
formation intensive message which relies on the
controller and pilot sharing a common communi-
cation model. All and only the necessary values
are given sequentially without reference to mean-
ing or line numbers.

What's being expressed here is that the initial
point will be Joyce. The heading, in magnetic
degrees, from the initial point to the target is 052.
The distance from the initial point to the target
is 18.6 nautical miles. The target's elevation is 0
above mean sea level. The target's description is
a "tank". The target's coordinates are 127000 by
27500 in the X/Y coordinate system of ModSAF.

47

Falconl4 (green): Rattler this-is Falconl4
Rattler (green): go-ahead
Falconl4 (green): Falconl4
Falconl4 (green): mission-number 20-059
Falconl4 (green): 2 F-14d
Falconl4 (green): holding-at Chevy
Falconl4 (green): angels 32
Falconl4 (green): 10 MK82
Falconl4 (green): time-on-station 1+30
Falconl4 (green): no-laser-capability
Rattler (green): roger
Rattler (green): Falconl4

Figure 7: Mission check in with FAC

Rattler (green):
Rattler (green):
Falconl4 (green)
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Rattler (green):
Falconl4 (green)

standing-by
with-9-line-brief

: ready-to-copy
Joyce
052
18.6
0
tank
x 127000 y 27500
wp
sv 8000 meters
Ford
tot ASAP

: ASAP

Figure 8: FAC gives 9 line brief

The target will be marked with white phosphor.4

There are friendlies in the area which are 8000
meters to the south-west. After the attack the
plane should egress through Ford. And the attack
should commence as soon as possible.

Falconl4 signals that he copies all of that infor-
mation and agrees to it by repeating the time.

Following this, there are brief exchanges when the
planes are spotted, cleared to drop, and for dam-
age assessment.

6. Research Issues in C3I

The development of C3I agents presents several
interesting research issues.

From a broader artificial intelligence perspective,
C3I presents interesting problems in reactive plan-
ning and managing dynamically changing goals in
the face of uncertainty. The battle field environ-
ment is constantly changing. This requires a fast
and efficient architecture to keep up with the speed
requirements of the situation as well as a flexible
architecture for incremental reasoning and reac-
tive planning.

Most of the planning currently done by our sys-
tem is reactive planning. In some situations the
C3I agents may have some time for decision mak-
ing and should use this time for more deliberate
planning. Recent research explores the possibility
of incorporating planning and means-ends analy-
sis mechanisms with our agents (van Lent, 1995;
Wray, 1995).

This work is very closely related to distributed ar-
tificial intelligence. Since we are basing our work
on an existing model which seems to work reason-
ably well, we can avoid many of the problems of
distributed artificial intelligence systems. For ex-
ample, our agents need not carry out protracted
negotiations.

We've demonstrated that a template driven ap-
proach to language understanding provides a suf-
ficiently flexible command language for many as-
pects of communication, but it's not clear how far
this approach can be extended. More work needs
to be done on natural language understand both
for agent flexibility and ease of use in human com-
puter interaction See (Lehman et a/., 1995) for re-
cent work.

Though these agents were prepared to take part
in the STOW-E demonstration, during rehearsal
they were unable to handle the large number of
other agents they saw in the world and crashed.
This turned out to be a buffer overflow problem,
but suggested several methods for reorganizing the
way of IFC-R agents handle large numbers of in-
puts. Currently, these IFOR agents will slow down
and their performance will degrade as the number
of other agents they have to consider increases.

In the immediate future we will address more mun-
dane, but no less critical tasks of tracking fuel
states and allocating fuel assets.

4 The capability for marking a target does not yet exist.

48

7. Discussion

We have described the current state of devel-
opment of C3I agents used by Soar/IFOR. We
have shown how the agents currently implemented
demonstrate the specific aspects of the C3I do-
main. Finally, we worked through an example
which showed multiple control agents interacting
with planes on a close air support mission.

We have demonstrated an ability to cope with
incomplete knowledge and incrementally supple-
ment information as it becomes available. This
requires continuous situation assessment: com-
mands, threats, and resources may arrive at any
time.

We believe that automation must be pushed up
the command hierarchy. As the number of simu-
lated agents grows, people will have to supervise
larger numbers of agents. We believe that the best
way to do this is to emulate the present military
command hierarchy. This has the advantage of
ease of use (nothing new to learn), effectiveness
(it has been proven through centuries of warfare),
and ease of understanding.

8. Acknowledgments

This work was done in close cooperation with John
E. Laird and Randolph M. Jones.

Thanks to BMH Associates, Inc. for their tech-
nical assistance, especially Craig Petersen, Mark
Checchio, Tom Brandt, and Bob Richards.

This research was supported at the University of
Michigan as part of contract N00014-92-K-2015
from the Advanced Systems Technology Office of
the Advanced Research Projects Agency and the
Naval Research Laboratory.

9. References

Ballas, J. A. abd McFarlane, D. C, Achille, L. B.,
Stroup, J. L., Heithecker, C. H., k Kushnier,
S. D. in press. Interfaces for intelligent control
systems. Tech. rept. NRL Technical Report.
Washington, D. C: Naval Research Labora-
tory.

Calder, R., Smith, J., Courtenmanche, A., Mar,
J., k Ceranowicz, A. 1993. ModSAF behavior
simulation and control. In: Proceedings of the

third conference on computer generated forces
and behavioral representation.

Gunston, B., k Spick, M. 1983. Modern air com-
bat. New York: Crescent Books.

Laird, J. E., k Rosenbloom, P. S. 1994. The
evolution of the Soar cognitive architecture.
Tech. rept. Computer Science and Engineer-
ing, University of Michigan. To appear in
Mind Matters, T. Mitchell Editor, 1995.

Laird, J. E., Newell, A., k Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence.
Artificial intelligence, 33(3).

Laird, J. E., Jones, R. M., k Nielsen, P. E.
1995a. Multiagent coordination in distributed
interactive battlefield simulations. Tech. rept.
Computer Science and Engineering, Univer-
sity of Michigan.

Laird, John E., Johnson, W. Lewis, Jones, Ran-
dolph M., Koss, Frank, Lehman, Jill F.,
Nielsen, Paul E., Rosenbloom, Paul S., Rubi-
noff, Robert, Schwamb, Karl, Tambe, Milind,
Dyke, Julie Van, van Lent, Michael, k Wray,
Robert. 1995b (May). Simulated intelligent
forces for air: The Soar/IFOR Project 1995.
In: Proceedings of the fifth conference on com-
puter generated forces and behavioral repre-
sentation.

Lehman, J. F., Rubinoff, R., k Van Dyke, J.
1995 (May). Natural language processing for
IFORs: Comprehension and generation in the
air combat domain. In: Proceedings of the
fifth conference on computer generated forces
and behavioral representation.

Newell, A. 1987. Unified theories of cognition:
1987 William James lectures. Available on
videocassette from Harvard Psychology De-
partment.

Newell, A. 1990. Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Rao, A., Lucas, A., Selvestrel, M., k Murray, G.
1994. Agent-oriented architecture for air com-
bat simulation. Tech. rept. The Australian
Artificial Intelligence Institute. Techinal Note
42.

Salisbury, M. 1995. Command and Control Sim-
ulation Interface Language (ccsil): Status
update. In: Proceedings of the the 12th
distributed interactive simulation workshop.

49

Sponsored by STRICOM and the Institute for
Simulation and Training (1ST) at the Univer-
sity of Central Florida.

Schwamb, K. B., Koss, F. V., k Keirsey, D. 1994
(May). Working with ModSAF: Interfaces
for programs and users. In: Proceedings of
the fourth conference on computer generated
forces and behavioral representation.

van Lent, M. 1995. Planning and learning in a
complex domain. Tech. rept. The University
of Michigan, Department of Electrical Engi-
neering and Computer Science.

Wray, R. E. 1995. A general framework for means-
ends analysis. Tech. rept. The University of
Michigan, Department of Electrical Engineer-
ing and Computer Science.

10. Author's Biography

Paul E. Nielsen is an assistant research scien-
tist working on the Intelligent Forces Project at
the Artificial Intelligence Laboratory of the Uni-
versity of Michigan. He received his Ph.D. from
the University of Illinois in 1988. Prior to joining
the University of Michigan he worked at the GE
Corporate Research and Development Center. His
research interests include intelligent agent mod-
eling, qualitative physics, machine learning, and
time constrained reasoning.

50

Recursive Agent and Agent-group Tracking in
a Real-time, Dynamic Environment

Milind Tambe
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

tambe@isi.edu
WWW:http://www.isi.edu/soar/tambe

Abstract

Agent tracking is an important capability an in-
telligent agent requires for interacting with other
agents. It involves monitoring the observable ac-
tions of other agents as well as inferring their un-
observed actions or high-level goals and behav-
iors. This paper focuses on a key challenge for
agent tracking: recursive tracking of individuals
or groups of agents. The paper first introduces
an approach for tracking recursive agent mod-
els. To tame the resultant growth in the track-
ing effort and aid real-time performance, the pa-
per then presents model sharing, an optimization
that involves sharing the effort of tracking mul-
tiple models. Such shared models are dynami-
cally unshared as needed — in effect, a model
is selectively tracked if it is dissimilar enough to
require unsharing. The paper also discusses the
application of recursive modeling in service of de-
ception, and the impact of sensor imperfections.
This investigation is based on our on-going effort
to build intelligent pilot agents for a real-world
synthetic air-combat environment.1

1 Introduction
In dynamic, multi-agent environments, an intelligent
agent often needs to interact with other agents to
achieve its goals. Agent tracking is an important re-
quirement for intelligent interaction. It involves moni-
toring other agents' observable actions as well as infer-
ring their unobserved actions or high-level goals, plans
and behaviors.

Agent tracking is closely related to plan recogni-
tion(Kautz & Allen 1986; Azarewicz et al. 1986),
which involves recognizing agents' plans based on ob-
servations of their actions. The key difference is that

1I thank Paul Rosenbloom and Ben Smith for detailed
feedback on this effort. Thanks also to Lewis Johnson, Pi-
otr Gmytrasiewicz and the anonymous reviewers for help-
ful comments. This research was supported under sub-
contract to the University of Southern California Informa-
tion Sciences Institute from the University of Michigan, as
part of contract N00014-92-K-2015 from the Advanced Sys-
tems Technology Office of the Advanced Research Projects
Agency and the Naval Research Laboratory.

plan-recognition efforts typically focus on tracking a
narrower (plan-based) class of agent behaviors, as seen
in static, single-agent domains. Agent tracking, in con-
trast, can involve tracking a broader mix of goal-driven
and reactive behaviors(Tambe k Rosenbloom 1995).
This capability is important for dynamic environments
where agents do not rigidly follow plans.

This paper focuses on the issues of recursive agent
and agent-group tracking. Our investigation is based
on an on-going effort to build intelligent pilot agents for
simulated air-combat(Tambe et al. 1995). These pilot
agents execute missions in a simulation environment
called ModSAF, that is being commercially developed
for the military(Calder et al. 1993). ModSAF provides
a synthetic yet real-world setting for studying a broad
range of challenging issues in agent tracking. By in-
vestigating agents that are successful at agent tracking
in this environment, we hope to extract some general
lessons that could conceivably be applied in other syn-
thetic or robotic multi-agent environments(Kuniyoshi
et al. 1994; Bates, Loyall, & Reilly 1992).

For an illustrative example of agent tracking in the
air-combat simulation environment, consider the sce-
nario in Figure 1. The pilot agent L in the light-shaded
aircraft is engaged in combat with pilot agents D and
E in the dark-shaded aircraft. Since the aircraft are far
apart, L can only see its opponents' actions on radar
(and vice versa). In Figure 1-a, L observes its oppo-
nents turning their aircraft in a coordinated fashion to
a collision course heading (i.e., with this heading, they
will collide with L at the point shown by x). Since the
collision course maneuver is often used to approach
one's opponent, L infers that its opponents are aware
of its (L's) presence, and are trying to get closer to fire
their missiles. However, L has a missile with a longer
range, so L reaches its missile range first. L then turns
its aircraft to point straight at D's aircraft and fires a
radar-guided missile at D (Figure 1-b). Subsequently,
L executes a 35° fpole turn away from D's aircraft (Fig-
ure 1-c), to provide radar guidance to its missile, while
slowing its rate of approach to enemy aircraft.

While neither D nor E can observe this missile on
their radar, they do observe L's pointing turn followed

51

D E

(a)

:>- ^
L DE

(b)

" **
D E

(c)

0 E

W

Figure 1: Pilot agents D and E are attacking L. An
arc on an aircraft's nose shows its turn direction.

by its fpole turn. They track these to be part of
L's missile firing behavior, and infer a missile firing.
Therefore, they attempt to evade this missile by exe-
cuting a 90" beam turn (Figure 1-d). This causes their
aircraft to become invisible to L's radar. Deprived
of radar guidance, L's missile is rendered harmless.
Meanwhile, L tracks its opponents' coordinated beam
turn in Figure 1-d, and prepares counter-measures in
anticipation of the likely loss of its missile and radar
contact.

Thus, the pilot agents need to continually engage in
agent tracking. They need to track their opponents'
actions, such as turns, and infer unobserved actions
and high level goals and behaviors, such as the fpole,
beam or missile firing behaviors. This paper focuses on
two key issues in agent tracking in this environment:

• Recursive agent tracking: Pilot agents continually
influence each other's behaviors, creating a need for
recursive tracking. For instance, in Figure 1-d, to
successfully track D's beam, L must also recursively
track how D is likely to be tracking L's own actions
— that D is aware of L's missile firing, and it is
beaming in response. Such recursive tracking may
also be used in service of deception, and in address-
ing other agents' realistic sensor (radar) limitations.

• Agent group tracking: An agent may need to track
coordinated (or uncoordinated) activities of a group
of agents, e.g., as just seen, L needed to track two
coordinated opponents.

To address these issues, this paper first presents an
approach for recursive tracking of an individual or a
groups of agents. This approach builds upon RESC,
a technique for real-time tracking of flexible and re-
active behaviors of individual agents in dynamic en-
vironments. RESC is a real-time, reactive version
of the model tracing technique used in intelligent tu-
toring systems — it involves executing a model of
the tracked agent, and matching predictions with ac-
tual observations(Anderson et al. 1990; Ward 1991;
Hill & Johnson 1994).

Unfortunately, recursive agent-group tracking leads
to a large growth in the number of models. Executing
all of these models would be in general highly prob-

lematic. The problem is particularly severe for a pi-
lot agent, given that it has to track opponents' ma-
neuvers and counter them in real-time, e.g., by going
beam to evade a missile fired at it. Thus, for execut-
ing recursive models (and for a practical investigation
of recursive tracking), optimizations for real-time per-
formance are critical. Previous work on optimizations
for agent tracking has mostly focused on intra-model
(within a single model) optimizations, e.g., heuristic
pruning of irrelevant operators(Ward 1991) restricted
backtrack search(Tambe & Rosenbloom 1995), and ab-
str action (Hill & Johnson 1994). In contrast, this pa-
per proposes inter-model (across multiple models) op-
timizations. It introduces an inter-model optimization
called model sharing, which involves sharing the effort
of tracking multiple models. Shared models are dy-
namically unshared when required. In essence, a model
is selectively tracked if it is dissimilar enough to war-
rant unsharing. The paper subsequently discusses the
application of recursive models in service of deception.
This analysis is followed up with some* supportive ex-
periments.

The descriptions in this paper assume the perspec-
tive of the automated pilot agent L, as it tracks its
opponents. They also assume ideal sensor conditions,
where agents can perfectly sense each others' maneu-
vers, unless otherwise mentioned. Furthermore, the de-
scriptions are provided in concrete terms using imple-
mentations of a pilot agent in a system called TacAir-
Soar(Tambe et al. 1995), built using the Soar archi-
tecture(Newell 1990; Rosenbloom et al. 1991). We
assume some familiarity with Soar's problem-solving
model, which involves applying operators to states to
reach a desired state.

2 Recursive Agent Tracking
One key idea in RESC is the uniform treatment of
an agent's generation of its own behavior and tracking
of other agent's behaviors. As a result, the combi-
nation of architectural features that enable an agent
to generate flexible goal-driven and reactive behaviors
are reused for tracking others' flexible and reactive be-
haviors. This uniformity is extended in this section in
service of recursive agent tracking.

To illustrate this idea, we first describe L's genera-
tion of its own behaviors, using the situation in Figure
1-d, just before the agents lose radar contact with each
other. Figure 2-a illustrates L's operator hierarchy
when executing its fpole. Here, at the top-most level, L
is executing its mission — to defend against intruders
— via the execute-mission operator. Since the termi-
nation condition of this operator — completion of L's
mission — is not yet achieved, a subgoal is generated.2

2If an. operator's termination conditions remain unsatis-
fied, a subgoal gets created. If these termination conditions
are satisfied by future state changes, then the operator and
all its subgoals are terminated.

52

Different operators are available in this subgoal, such
as follow-flighi-path, intercept, and run-away. L selects
the intercept operator to combat its opponent D. In
service of intercept, L applies the employ-missile op-
erator in the next subgoal. Since a missile has been
fired, the fpole operator is selected in the next sub-
goal to guide the missile with radar. In the final sub-
goal maintain-heading is applied, causing L to main-
tain heading (Figure 1-d). All these operators, used for
generating L's own actions, will be denoted with the
subscript L, e.g., fpolt^. Operator^ will denote an
arbitrary operator of L. Statej^ will denote the global
state shared by all these operators. Together, statej^
and the operator^ hierarchy constitute L's model of
its present dynamic self, referred to as modelj^.

Opentor Hjcmchy <*«*»„ Hkmby Opa""JIt, Ifcuirtjr

1 EXECUTE-MISSION \ 1 EXECUIE-WSStON 1

1
1 EXECUTE-MISSION 1

1
| INTERCEPT | INTERCEPT | INTERCEPT |

, ^ - 1 I
| EUPior-iassaE | | EVADE | | EMPLOY-MISSILE |

1 1 '
| FPOLE | 1 BEAM-RIGHT 1 | FPOLE |

' 1 1 '
\iuamm-

0

HEADING]

1)

^TART-HAl

0=

<NTN-TURN\

)

\MA2NTMN-

(

HEADING |

4

Figure 2: (a) Modelj,; (b) Model^jj; (c) Model^m,.

Modelj^ supports L's flexible/reactive behaviors,
given Soar's architectural apparatus for operator se-
lection and termination(Rosenbloom et al. 1991). L
reuses this apparatus in tracking its opponents' be-
haviors. Thus, L uses a hierarchy such as the one in
Figure 2-b to track D's behaviors. Here, the hierarchy
represents L's model of D 's current operators in the sit-
uation in Figure 1-d. These operators are denoted with
the subscript LD. This operator^ hierarchy, and the
stateTj) that goes with it, constitute L's model of D or
modelj,jj. ModelTT) obviously cannot and does not
directly influence Ers actual behavior, it only tracks
D's behavior. For instance, in the final subgoal, L
applies the start-&-maintain-tvrnTjy operator, which
does not cause D to turn. Instead, this operator pre-
dicts D's action and matches the prediction with D's
actual action. Thus, if D starts turning right towards
beam, then there is a match with model^n — I» be-
lieves that D is turning right to beam and evade its
missile, as indicated by other higher-level operators in
the operator^D hierarchy. Note that, in reality, from
L's perspective, there is some ambiguity in D's right
turn in Figure 1-d — it could be part of a big 150°
turn to run away given L's missile firing. To resolve
such ambiguity, L adopts several techniques, such as
assuming the worst-case hypothesis about its enemy,
which in this case is that D is beaming rather than

running away. We will not discuss RESC's ambigu-
ity resolution any further in this paper (see (Tambe &
Rosenbloom 1995) for more details).

Thus, with the RESC approach, L tracks D's be-
haviors by continuously executing the operator^j) hi-
erarchy, and matching it against D's actions. To
recursively track its own actions from D's perspec-
tive, L may apply the same technique to its recursive
modelLjjT (L's model of D's model of L) as shown
in Figure 2-c. Modelj^j^ consists of an operatorjjjr
hierarchy and statej^^. The important point here is
the uniform treatment of the operatorj^j- hierarchy
— on par with operatorr j) and operatorr nierarchies
— to support the tracking of flexible andreactive be-
haviors. L tracks modelj^j)^ by matching predictions
with its own actions. Further recursive nesting leads
to the tracking of modelj^m and so on. To track
additional opponents, e.g., the second opponent E, L
tracks additional models, such as modeljjp. L may
also track modeljjjjL, modeljjgj), modelj^Djj etc for
recursive tracking.

Recursive tracking is key to tracking other agents'
behaviors in interactive situations. Thus, it is L's re-
cursive tracking of fpolejjj^T which indicates a mis-
sile firing to modelj^jj, and causes the selection of
evade-missilerj) to track D's missile evasion. Note
that in Figure 2-c, ambiguity resolution in modeljTjT
leads to an operatorj^T hierarchy that is identical
to the operator^ hierarchy. One key ambiguity reso-
lution strategy is again the worst-case assumption —
given ideal sensor situations, L assumes D can accu-
rately track L's behaviors. Thus, among possible op-
tions in the operatorjjjjj- hierarchy, the one identical
to operator^ gets selected. However, these hierarchies
may not always be identical and the differences be-
tween them may be exploited in service of deception
at least in adversarial situations. These possibilities
are discussed in more detail in Section 5.1.

3 Executing Models in Real-time
Unfortunately, the recursive tracking" scheme intro-
duced in the previous section points to an exponential
growth in the number of models to be executed. In
general, for JV opponents, and r levels of nesting (mea-
sured with r = 1 for model^, r = 2 for modeljjj,
and so on), the pilot agent L may need to execute:
YAZI N* models (which is r for N = 1, but $f* for
N > 1). This is clearly problematic given the likely
scale-up in N. In particular, given its limited computa-
tional resources, L may be unable to execute relevant
operators from all its models in real-time, jeopardizing
its survival. In fact, as seen in Section 6, L may run
into resource contention problems while executing just
five models — indicating possible difficulties even for
small N and r.

Thus, optimizations involving some form of selec-
tive tracking appear necessary for real-time execution
of these models. Yet, such selectivity should not cause

53

an agent to be completely ignorant of critical informa-
tion that a model may provide (e.g., an agent should
not be ignorant of an opponent's missile firing). To
this end, this paper focuses on an optimization called
model sharing. The overall motivation is that if there
is a modely that is near-identical to a modelx, then
modely's states and operators can be shared with those
of modelx- Thus, modely is tracked via the execution
of modelx, reducing the tracking effort in half. Modely
may be dynamically unshared from modelx if it grows
significantly dissimilar. Thus, a model is selectively
executed based on its dissimilarity with other models.

For an illustration of this optimization, consider
modely and modelj^jjjj, as shown in Figure 2.
The operator^!)]- hierarchy can be shared with the
operatorT hierarchy since the two are identical. (In
low-level implementation terms, sharing an operator^
involves adding a pointer indicating it is also a part of
modeln}!,). Furthermore, information in statejjjj,
is shared with statej,. Thus, L essentially executes
operators from only one model, instead of two.

Given the efficiency benefits from sharing, it is often
useful to abstract away from some of the differences
between models in order to enable sharing. However,
such abstraction may not be possible for some static
and/or dynamic aspects of the models. One important
aspect relates to private information. In particular, in
their unshared incarnations, models have their indices
organized so as to prevent a breach of privacy, e.g.,
modelj^jj can access information in modelj^jjj^, but
not modely. Model sharing could potentially breach
such privacy. Thus, for instance, if stateT maintains
secret missile information, sharing it with statej^j,
would allow modelj-j) to access that secret. To pre-
vent model sharing from breaching such privacy, some
aspects of the shared models may be explicitly main-
tained in an unshared fashion. Thus, if L's missile
range is (a secret) 30 miles, but L believes D believes
it is 50 miles, then the missile range is maintained sepa-
rately on statej^ and staterjjjj. Figure 3 shows the re-
sulting shared models with an unshared missile range.

Such sharing among models is related to the shar-
ing of belief spaces in the SNePS belief representation
system(Shapiro & Rapaport 1991). One key difference
is dynamic model unsharing. In particular, while some
of aspects of the models are static (e.g., the statically
unshared missile ranges above), other aspects, partic-
ularly those relating to operators, are highly dynamic.
As a result, shared components may need to be dy-
namically unshared when dissimilar. Ideally, any two
models could be merged (shared) when they are near-
identical, and dynamically unshared in case of differ-
ences. This would be ideal selectivity — a model is
tracked if it requires unsharing. However, in practice,
both unsharing and merging may involve overheads.
Thus, if an agent greedily attempts to share any two
models whenever they appear near-identical, it could
face very heavy overheads. Instead, it has to selec-

OperetorL & Operator jjg, hierarchies

EXECUTE-MISSION

INTERCEPT

I
| EMPLOY-MISSILE

I
FPOLE

MAINTAIN-HEAD1NG

State
h

Missile-range
30 miles

Share

State
LDI

Missile-range
= 50 miles

Figure 3: Sharing modely with model^u^.

tively share two models over a time period A so that
the savings from sharing outweigh the cost of dynamic
unsharing and re-merging during A. In particular, sup-
pose there are two models, modelx and modely that
are unshared over n sub-intervals $i, #2, ...,£n of A,
but shared during the rest of A. Further, suppose
costj(.M) is the cost of executing a model M. over a
time interval 6; cost(unshare) and cost(merge) are the
overheads of unsharing and merging respectively; and
cost« (detect) is thexost incurred during 6 of deciding
if shared models need to be unshared or if unshared
models can be merged (this may potentially involve
comparing two different models and deciding if shar-
ing is cost-effective). Then, in sharing modely with
modelx during A, benefits outweight costs iff:

cost ^(modely)—3^.*, eosti(modely)>
nxcost(unsharc)+nxco*t(merge)+cost ^(detect) (1)

While, ideally, agents may themselves evaluate this
equation, our agents are unable to do so at present.
Therefore, candidate categories of models — with high
likelihood of sharing benefits outweighing costs — are
supplied by hand. Nonetheless, agents do determine
specific models within these categories that may be
shared, and implement the actual sharing and dynamic
unsharing. The categories are:

1. Models of distinct agents at the recursive depth of
r = 2: If a group of agents, say D and E, together
attack L, modelirjj and modely JJ may be possibly
shared. Thus, if all models of its N opponents are
shared, L may need track only, one model at r = 2;
if not shared, L may track N models at r = 2.

2. Recursive models of a single agent at r > 3: For in-
stance, modelyj)L and model^g]^ may be shared
with modely. Similarly, modelmjj may be shared
with modelrjj or model^rjTJJ, etc. Models at re-
cursive depth r > 3 may all t>e shared with models
at r = 1 or 2. If all such models are shared, L may
need to track no models at r > 3.

The end result is that an agent L may track a group

54

of N agents (with sharable models) with just two mod-
els — modelj^ at r = 1, and one model at r = 2, and
the rest are all shared — instead of 0(Nr) models. If
the models of N agents are not sharable, then it may
still need just N + 1 models, given the sharing in the
recursion hierarchy. Thus, sharing could provide sub-
stantial benefits in tracking even for small N and r. In
the following, Section 4 examines in more detail the
model sharing within a group, and Section 5 examines
sharing within and across recursion hierarchies.

4 Sharing in Agent-Group Tracking
Agents that are part of a single group often act in a
coordinated fashion — executing similar behaviors and
actions — and thus provide a possible opportunity for
model sharing. For instance, if D and E are attacking
L in a coordinated fashion, they may fly in formation,
execute similar maneuvers etc. However, their actions
are not perfectly identical — there are always some
small delays in coordination for instance — which can
be a possible hinderence in sharing. If the delays and
differences among the agents' actions are small, they
need to be abstracted away, to facilitate model sharing.
Yet, such abstraction should allow tracking of essential
group activities.

To this end, one key idea to track an agent-group
is to track only a single paradigmatic agent within the
group. Models of all other agents within the group
are then shared with the model of this paradigmatic
agent. Thus, a whole group is tracked by tracking a
single paradigmatic agent. For example, suppose L
determines one agent in the attacking group, say D,
to be the paradigmatic agent. It may then only track
modelj^j}, and share other models, such as modelsJJ
with modeljj}, reducing its the tracking burden.

Such model sharing needs to selective, if benefits are
to outweigh costs. In this case, the following domain-
specific heuristics help tilt the balance in favor of shar-
ing by reducing the cost of detection, merging and un-
sharing:

• Cost(detect): This involves detecting two or more
agents (opponents) to be part of a group with
sharable models. Such a group is detected at low
cost by testing the agents' physical proximity and
direction of movement. If these are within the
ranges provided by domain experts, the correspond-
ing agents' models are shared. If the agents move
away from each other (outside of this range) their
models are unshared. Once outside this range, no
attempt is made at model sharing — such agents
are likely to be engaged in dissimilar activities, and
even if their models are found to be near-identical,
they are likely to be so for a short time period.

• Cost(merge): Merging involves the cost of selecting
a paradigmatic agent within the group. It may be
possible to select an agent at random from the group
for this role. However, an agent in some prominent

position, such as in front of the group, is possibly a
better fit for the role of a paradigmatic agent, and
can also be picked out at a low cost. In air-combat
simulation, an agent in such a position is typically
the leader of the group of attacking opponents. It
initiates maneuvers, and others follow with a small
time-lag. The group leader is thus ideal as a paradig-
matic agent. Note that a dynamic change in the
paradigmatic agent does not cause unsharing.

• Cost(Unshare): Unsharing, however, has a rather
high cost. For instance, once D and E are de-
tected to have unshared models, a completely new
modeljjjj is constructed. Here, the entire statej^jj
has to be copied to statej^jj.

The end result is that a particular agent's model is
selectively executed when the agent breaks away from
the coordinated group. Otherwise, its model is merged
with the paradigmatic agent's model.

5 Sharing in Recursion Hierarchy-
Models of a single agent across a recursion hierarchy
are likely to be near-identical to each other, and thus
they form the second category of models that may al-
low sharing. We have so far limited our investigation
of sharing/unsharing to models with r < 3, and specif-
ically to different models of L, such as modeljjjT and
modeljvi, at r = 3, with modelj, at r = 1. Other
models, including those at deeper levels of nesting (r >
4) are never unshared. For instance, modelj^jj) is
never unshared from modelJJJ. The motivation for
this restriction is in part that in our interviews with
domain experts, references to unshared models at r > 4
have rarely come up. In part, this also reflects the com-
plexity of such unsharing, and it is thus an important
issue to be addressed in future work.

To understand the cost-benefit tradeoffs of sharing
recursive models, it is first useful to understand how
sharing and unsharing may actually occur. One gen-
eral technique for accomplishing sharing in the re-
cursion hierarchy is to first let models generate its
operator hierarchy. As the hierarchy is generated,
if modelj^pL agrees with an operator^ — that is,
it would have generated an identical operator]^ £,
given statejjjk — then it (modeljjQjJ "votes" in
agreement. This "vote" indicates that that par-
ticular operator^ from modelj^ is now shared with
modeljj^jj. This essentially corresponds to the worst
case strategy introduced in section 2 — given a choice
among operatorsJ^DI,' *^e one '^at m identical to
operator^ is selected and shared.

Thus, the detection/merging cost is low, since this
can be accomplished without an extensive comparison
of models. Furthermore, the savings from model shar-
ing are substantial — as discussed below, unsharing
occurs over small time periods. Furthermore, the un-
sharing cost is low, since it does not involve state copy-
ing. Thus, sharing benefits appear to easily outweigh

55

its costs.
Unsharing actually occurs because of differences be-

tween state j, and state^D^. Due-to these differences,
the recursive modelj^Tjjj cannot generate an operator
that is shared with operator £. There is then unsharing
of the operator hierarchies in modelj^T and modelT ,
which may be harnessed in service of deceptive (or
other) tactics. In the following, Subsection 5.1 focuses
on one general strategy for such deception. Subsection
5.2 focuses on a special class of differences between re-
cursive states — caused by sensor imperfections — and
the deceptive maneuvers possible due to those differ-
ences.

5.1 Deception

Due to differences between statej^jjj^ and statej,,
modelj^Dk mav generate an operatorj^nL *na* can"
not be shared in the operator^ hierarchy. This in-
dicates to L that D expects L to be engnaged in a
different maneuver (operatorr JJJJ than the one it is
actually executing (operator^). In such cases, L may
attempt to deceive D by abandoning its on-going ma-
neuver and "playing along" with what it believes to be
D's expectations.

To understand this deceptive strategy, consider the
following case of L's deceptive missile firing. Let us
go back to the situation in Figure 1-a, although now,
assume that state^ maintains a secret missile range
of 30 miles, while statenjj^ maintains the range to
be 50 miles. The missile range is noted in the un-
shared portions of the states as shown in Figure 3. At
a range of 50 miles — given that statej^j}^ notes the
missile range to be 50 miles — modelLDL suggests
the execution of a employ-missihrj^^ operator. This
causes unsharing with operators in modelj^. Employ-
missile^j^-^ subgoals into get-steering-circlejjy^, in-
dicating a turn to point at target, as shown in Fig-
ure 1-b.

These operators suggest actions for L in order
to deceive its opponent. L may execute deceptive
operators^ that create the external actions suggested
by operatorTjjL without actually launching a mis-
sile. L therefore executes a employ-missile-deceptivejj
operator. This subgoals into the get-steering-circle-
deceptiver operator. This causes the next subgoal,
of start-B-maintain-turnj^ in modelj^ which actually
causes L to turn to point at its target, D. This differ-
ence in modelj^ and modeljjQL causes some unshar-
ing in their operator hierarchies, as shown in Figure
4. After pointing at target, modelTjjjj executes the
fpohjjQjj operator — that is, L believes that D is ex-
pecting L's fpole to support an actual missile in the air.
L executes fpole-deceptivej^ without actually firing a
missile. Thus, with a deceptive maneuver, L convinces
D that it has fired a missile at a much longer range,
without actually firing one — forcing D to go on the
defensive by turning towards beam.

L can employ a whole class of such deceptive maneu-

SttlC
X»

MiaiU-nmge
- 30mU*s

Sh»re
Stale

Missile-range
mSOmOa

Figure 4: Deceptive missile firing: operator^ and
operator^L hierarchies are dynamically unshared.

vers by going along with modeljjjj/s expectation, as
it did here. This is essentially a general strategy for de-
ceptive maneuvers, which is instantiated with particu-
lar deceptive maneuvers in real-time. Yet, this is only a
first step towards a full-fledged deceptive agent. There
are many other deceptive techniques and issues that
remain unresolved, e.g., determining whether engag-
ing in deception would lead to a globally sub-optimal
behavior.

5.2 Sensor Imperfections

Realistic radar imperfections in this domain also lead
to unsharing among recursive models. It is useful to
examine these in some detail, since these are illustra-
tive of the types of differences that are expected to
arise in other domains where agents have realistic sen-
sors. To this end, it is useful to classify the different
situations resulting from these imperfections as shown
in Figure 5. As a simplification, these situations de-
scribe L's perspective as it interacts with a single op-
ponent for D, and limited to r < 3. Figure 5-a focuses
on an agent's awareness of another's presence. In the
figure, Aware<BAZ> denotes someone's awareness of
an agent named BAZ. Furthermore, subscript L indi-
cates L's own situation, a subscript LD indicates L's
tracking of D, a subscript LDL indicates L's recursive
tracking of D's tracking of L. Thus, the first branch
point in 5-a indicates whether L is aware of D's pres-
ence (+Aware£<D>) or unaware (—Aware£/<D>).
If — AwareT <D> then L can not track D's aware-
ness. If +Awarej/<D>, then L may believe that D
is aware of L's presence (+Aware£j) <L>) or unaware
(—AwareT p<L>). If+Awarejjp<L>, then L may
have beliefs about D's beliefs about L's awareness:
+Awareu)ii

<D> or —AwareiiDi(<D>.
While an agent may be aware of another, it may

not have accurate sensor information of the other
agent's actions, specifically, turns, climbs and dives.
For instance, in Figure 1-d, +Awareji<D>, yet L
loses radar contact due to D's beam. Figure 5-b
classifies these situations. Here, +Sensej(<D> refers

56

+Aware <D> -Aware „<D>

-Aware . <L>

+Aware , «cD>

(a)

-Sense. „<D>

<L>

+SenseT„<D> -Sense. <D>

(b)

Figure 5: Classifications by: (a) awareness; (b) accu-
racy of sensor information.

to situations where L believes it has accurate sen-
sor information of D's actions, while —SenseT <D>
refers to situations as in Figure 1-d, where it does
not. In either case, L may believe that D ei-
ther has accurate sensor information of L's actions
(+Senseu3 <L>) or not (—Sense£j)<L>). Thus,
in Figure 1-d, while —Senseji<D>, L also believes
D has lost radar contact due to its 90° beam
turn (—Sensejj) <L>). Recursion continues with
+Sense£(£)£<D> and —Sense£]3ji<D>.

Based on the above classification, L's perspec-
tive of a situation may be described as a six-
tuple. For instance, Figures 1-a to 1-c may
be described as (+Awarejj<D>, +AwareLj)<L>,
+Awarej|j)ji<D>, +Sense£/<D>, -fSensem <L>,
+Sensejij)£j<D>). This is the previously introduced
ideal sensor situation, with a+" awareness and sensor
accuracy. Based on the six-tuple, 64 such situations
seem possible. However, many are ruled out — if an
agent is unaware of another, it cannot have accurate
sensor information regarding that agent — reducing
the number of possible situations to 15.

Within these 15, we have so far examined unsharing
and deception in the context of one situation, namely
the ideal situation. We now briefly examine the un-
sharing and deception possible in the remaining 14 sit-
uations. Among these 14, there are three that typi-
cally arise in the initial portions of the combat where
L believes D is unaware of L (—Awarejjj <L>)- For
instance, L may have seen D by virtue of its longer
range radar, but it may have assumed that D is still un-
aware due to its shorter range radar: (+Awarej/<D>,
—Awarejij)<L>, —AwareIiDIj<D>, +SenseT <D>,
—Sensej^rj<L>, — SenseTD£,<D>). In all these
cases, modelj^jjT is nulC and thus the question of
sharing with moaelr does not arise. Suppose as the
aircraft move even closer, D engages in the collision
course maneuver, which allows L to conclude that
+Awarerjp<L>. Here, there are two possibilities.
First, if —Awarejjjjj/<D>, i.e., L believes D believes
L is unaware of D, there is much greater dissimilar-

ity between model-r JJJ^ and modelj,. Modelj-jjj^ now
predicts that L will not engage in combat with D, i.e.,
there will be unsharing even with the intercept^ opera-
tor. Once again, L may deceive D by acting consistent
with modelj^j/s expectation, and not turn towards
D. This is similar to the deceptive strategy introduced
in Section 5.1. L may then wait till D gets closer and
then turn to attack.

The second possibility is -fAwarejjjr <D>. In this
case, we return to the ideal situation in Figures 1-a
to 1-c, where unsharing is still possible as in Figure
4. Furthermore, even with +AwarejjpTj<D>, there
are situations with —Senseji£j<L>, where L believes
D cannot sense L's actions. In such cases, L may
engage in deception by deliberately not acting consis-
tent with model^pj^'s expectations, e.g., diving when
modelj^jjiTj does not expect such a dive. Such delib-
erate unsharing is another type of deceptive strategy
that among many others, is one we have not examined
in detail so far.

6 Experimental Results
To understand the effectiveness of the agent tracking
method introduced here, we have implemented an ex-
perimental variant of TacAir-Soar(Tambe et al. 1995).
The original TacAir-Soar system contains about 2000
rules, and automated pilots based on it have par-
ticipated in combat exercises with expert human pi-
lots(Tambe et al. 1995). Our experimental version —
created since it employs an experimental agent track-
ing technology — contains about 950 of these rules.
This version can recursively track actions of individu-
als or groups of opponents while using the model shar-
ing optimizations, and engaging in deception. Proven
techniques from this experimental version are trans-
ferred back into the original TacAir-Soar.

Table 1 presents experimental results for typical sim-
ulated air-combat scenarios provided by the domain
experts. Column 1 indicates the number of opponents
(JV) faced by our TacAir-Soar-based agent L. Column
2 indicates whether the opponents are engaged in a
coordinated attack. Column 3 shows the actual max-
imum number of models used in the combat scenar-
ios with the optimizations (excluding temporary model
unsharing in service of deception). The numbers in
parentheses are projected number of models — 2JV+1
— without the model sharing optimization (the actual
number without sharing should be 0(JVr), but we ex-
clude the permanently shared models from this count
— see Section 5). With optimizations, as expected,
the number of models is N+l when opponents are not
coordinated, and just two when the opponents are co-
ordinated. Column 4 shows the actual and projected
number of operator executions. The projected number
is calculated assuming 2N+1 models. Column 5 shows
a two to four fold reduction (projected/actual) in the
number of operators. Savings are higher with coordi-
nated opponents. L is usually successful in real-time

57

tracking in that it is able to track opponents' behav-
iors rapidly enough to be able to respond to them. L
is unsuccessful in real-time tracking in the case of four
uncoordinated opponents (with 5 models), and it gets
shot down (hence fewer total operators than the case
of 2 opponents). This failure indicates that our opti-
mizations have helped — without them, L could have
failed in all cases of 2 or 4 opponents since they involve
5 or more projected models. It also indicates that L
may need additional optimizations.

N Coord? Actual(projct)
num max model

Actual(projct)
total operatrs

Reduction
(proj/act)

1 - 2(3) 143(213) 1.5

2 No 3(5) 176(314) 1.8

4 No 5(9) 148(260) 1.8

2 Yes 2(5) 109(251) 2.3

4 Yes 2(9) 105(407) 3.9

Table 1: Improvements due to model sharing.

7 Summary
This paper focused on real-time recursive tracking of
agents and agent-groups in dynamic, multi-agent envi-
ronments. Our investigation was based on intelligent
pilot agents in a real-world synthetic air-combat envi-
ronment, already used in a large-scale operational mil-
itary exercise(Tambe et al. 1995). Possible take-away
lessons from this investigation include:

• Address recursive agent tracking via a uniform treat-
ment of the generation of flexible/reactive behaviors,
as well as of tracking and recursive tracking.

• Alleviate tracking costs via model sharing — with
selective unsharing in situations where models grow
sufficiently dissimilar.

• Track group activities by tracking a paradigmatic
agent.

• Exploit differences in an agent's self model and its
recursive self model in service of deception and other
actions.

One key issue for future work is understanding the
broader applicability of these lessons. To this end, we
plan to explore the relationships of our approach with
formal methods for recursive agent modeling(Gmy-
trasiewicz, Durfee, & Wehe 1991; Wilks & Ballim
1987). This may help generalize the tracking approach
introduced in this paper to other multi-agent environ-
ments, including ones for entertainment or education.

References
Boyle, C. F.; Corbett, A. T.: and Anderson, J. R.:

Lewis, M. W. 1990. Cognitive modeling and intelli-
gent tutoring. Artificial Intelligence 42:7-49.
Azarewicz, J.; Fala, G.; Fink, R.; and Heithecker, C.
1986. Plan recognition for airborne tactical decision

making. In Proceedings of the National Conference on
Artificial Intelligence, 805-811. Menlo Park, Calif.:
AAAI press.
Bates, J.; Loyall, A. B.; and Reilly, W. S. 1992. In-
tegrating reactivity, goals and emotions in a broad
agent. Technical Report CMU-CS-92-142, School of
Computer Science, Carnegie Mellon University.
Calder, R. B.; Smith, J. E.; Courtemanche, A. J.;
Mar, J. M. F.; and Ceranowicz, A. Z. 1993. Modsaf
behavior simulation and control. In Proceedings of
the Conference on Computer Generated Forces and
Behavioral Representation.
Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K.
1991. A decision theoretic approach to co-ordinating
multi-agent interactions. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence.

Hill, R., and Johnson, W. L. 1994. Situated plan at-
tribution for intelligent tutoring. In Proceedings of the
National Conference on Artificial Intelligence. Menlo
Park, Calif.: AAAI press.

Kautz, A., and Allen, J. F. 1986. Generalized plan
recognition. In Proceedings of the National Confer-
ence on Artificial Intelligence, 32-37. Menlo Park,
Calif.: AAAI press.
Kuniyoshi, Y.; Rougeaux, S.; Ishii, M.; Kita, N.;
Sakane, S.; and Kakikura, M. 1994. Cooperation
by observation - the framework and the basic task
pattern. In Proceedings of the IEEE International
Conference on Robotics and Automation.
Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Mass.: Harvard Univ. Press.
Rosenbloom, P. S.; Laird, J. E.; Newell, A.; ; and
McCarl, R. 1991. A preliminary analysis of the soar
architecture as a basis for general intelligence. Artifi-
cial Intelligence 47(l-3):289-325.
Shapiro, S. C, and Rapaport, W. J. 1991. Models and
minds: knowledge representation for natural language
competence. Cambridge, MA: MIT Press.
Tambe, M., and Rosenbloom, P. S. 1995. Resc: An
approach to agent tracking in a real-time, dynamic en-
vironment. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).
Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F.;
Laird, J. E.; Rosenbloom, P. S.; and Schwamb, K.
1995. Intelligent agents for interactive simulation en-
vironments. AI Magazine 16(1).
Ward, B. 1991. ET-Soar: Toward an ITS for Theory-
Based Representations. Ph.D. Dissertation, School of
Computer Science, Carnegie Mellon Univ.
Wilks, Y., and Ballim, A. 1987. Multiple agents and
hueristic ascription of belief. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence.

58

RESC: An Approach for Real-time, Dynamic Agent Tracking

Milind Tambe and Paul S. Rosenbloom
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

Email: {tambe, rosenbloom}@isi.edu
WWW: http://www.isi.edu/soar/{tambe,rosenbloom}

Abstract

Agent tracking involves monitoring the observ-
able actions of other agents as well as infer-
ring their unobserved actions, plans, goals and
behaviors. In a dynamic, real-time environ-
ment, an intelligent agent faces the challenge
of tracking other agents' flexible mix of goal-
driven and reactive behaviors, and doing so
in real-time, despite ambiguities. This paper
presents RESC (REal-time Situated Commit-
ments), an approach that enables an intelligent
agent to meet this challenge. RESC's situat-
edness derives from its constant uninterrupted
attention to the current world situation — it
always tracks other agents' on-going actions in
the context of this situation. Despite ambigu-
ities, RESC quickly commits to a single inter-
pretation of the on-going actions (without an
extensive examination of the alternatives), and
uses that in service of interpretation of future
actions. However, should its commitments lead
to inconsistencies in tracking, it uses single-
state backtracking to undo some of the commit-
ments and repair the inconsistencies. Together,
RESC's situatedness, immediate commitment,
and single-state backtracking conspire in pro-
viding RESC its real-time character.
RESC is implemented in the context of intelli-
gent pilot agents participating in a real-world
synthetic air-combat environment. Experimen-
tal results illustrating RESC's effectiveness are
presented.1

1 Introduction
In a multi-agent environment, an automated agent of-
ten needs to interact intelligently with other agents to
achieve its goals. Agent tracking — monitoring other

1We thank Rick Lewis and Yasuo KuniyosH for helpful
feedback. This research was supported under subcontract to
the University of Southern California Information Sciences
Institute from the University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Systems Technology
Office (ASTO) of the Advanced Research Projects Agency
(ARPA) and the Naval Research Laboratory (NRL).

agents' observable actions and inferring their unobserved
actions, plans, goals and behaviors — is a key capability
required to support such interaction.

This paper focuses on agent tracking in real-time,
dynamic environments. Our approach is to first build
agents that are (reasonably) successful in agent tracking
in such environments, and then attempt to understand
the underlying principles. Thus, the approach is one of
first building an "interesting" system for a complex en-
vironment, and then understanding why it does or does
not work (see [Hanks et at, 1993] for a related discus-
sion). In step with this approach, we are investigating
agent tracking in the context of our on-going effort to
build intelligent pilot agents for a real-world synthetic
air-combat environmentlTambe et al., 1995]. This envi-
ronment is based on a commercially developed simulator
called ModSAF[Calder et al, 1993], which has already
been used in an operational military exercise involving
expert human pilots. For an illustrative example of agent
tracking in this environment, consider the scenario in
Figure 1. It involves two combating pilot agents — L in
the light-shaded aircraft and D in the dark-shaded one.

<t)

V - #

fc>

-#
L D

*9

*
L D

«

Figure 1: A simulated air-combat scenario. An arc on
an aircraft's nose shows its turn direction.

Initially, L and D's aircraft are 50 miles apart, so they
can only see each other's actions on radar. For effective
performance, they have to continually track these ac-
tions. Indeed, D is able to survive a missile attack by L
in this scenario due to such tracking, despite the missile
being invisible to D's radar. In particular, in Figure 1-
a, D observes L turning its aircraft to a collision-course
heading (i.e., at this heading, L will collide with D at

59

the point shown by x). Since this heading is often used
to reach one's missile firing range, D infers the possibil-
ity that L is trying to reach this range to fire a missile.
In Figure 1-b, D turns its aircraft 15" right. L reacts
by turning 15° left, to maintain collision course. In Fig-
ure 1-c, L reaches its missile range, points its aircraft
at D's aircraft and fires a radar-guided missile. While
D cannot see the missile on its radar, it observes L's
turn, and infers it to be part of L's missile firing behav-
ior. Subsequently, D observes L executing a 35° turn
away from its aircraft (Figure 1-d). D infers this to be
an fpole turn, typically executed after firing a missile to
provide radar guidance to the missile, while slowing the
closure between the two aircraft. While D still cannot
observe the missile, it is now sufficiently convinced to
attempt to evade the missile by turning 90° relative to
the direction of L's aircraft (Figure 1-e). This beam turn
causes D's aircraft to become invisible to L's (doppler)
radar. Deprived of radar guidance, L's missile is ren-
dered harmless.

Meanwhile, L tracks D's beam turn in Figure 1-e, and
prepares counter-measures in anticipation of the likely
loss of both its missile and radar contact.

Thus, the pilot agents need to continually track their
opponents' actions, such as turns, and infer unobserved
actions, high-level goals and behaviors, such as the fpole,
beam or missile firing behaviors. This agent tracking ca-
pability is related to plan-recognition[Kautz and Allen,
1986; Azarewicz et al., 1986]. The key difference is that
plan-recognition efforts typically focus on tracking a nar-
rower (plan-based) class of agent behaviors, as seen in
static, single-agent domains. In particular, they assume
that agents rigidly follow plans step-by-step. In contrast,
agent tracking involves the novel challenge of tracking a
broader mix of goal-driven and reactive behaviors. This
capability is important for dynamic environments such
as air-combat simulation where agents do not rigidly fol-
low plans — as just seen, pilot agents continually react
to each other's maneuvers.

Agent tracking and plan recognition are both part of
a larger family of comprehension capabilities that enable
an agent to parse a continuous stream of input from its
environment, whether it be in the form of natural lan-
guage or speech or music or simulated radar input, as
is the case here (e.g., see [Rich and Knight, 1990, chap-
ter 14]). Resolving ambiguities in the input stream is
a key problem when parsing all of these different types
of input. One example of the ambiguity faced in agent
tracking can be seen in L's turn in Figure 1-c. From D's
perspective, L could be turning to fire a missile. Alter-
natively, L could be beginning a 180° turn to run away
from combat. Or L could simply be following its flight
plan, particularly if it has a much shorter radar range,
and thus is likely unaware of D. Despite such ambigui-
ties, D has to track L's actions with sufficient accuracy
so as to respond appropriately. The novel challenge in
this domain — at least with respect to previous work in
plan recognition — is that the ambiguity resolution has
to occur in real-time. As the world rapidly moves on, an
agent cannot lag behind in tracking. Thus, if D is late or
inaccurate in its tracking of L's missile firing maneuvers

in Figure 1-c, it may not evade the missile in time.
This paper describes an approach called RESC (REal-

time Situated Commitments) for agent tracking that ad-
dresses the above challenges. RESC's situatedness rests
on its constant attention to the current world situation,
and its tracking of other agents' actions in the context of
this situation. Despite its situatedness, RESC does make
some commitments about the other agent's unobserv-
able actions, behaviors and goals, and attempts to use
those in tracking the agent's future actions. In ambigu-
ous situations, these commitments could be inappropri-
ate and could lead to failures in tracking — in such cases,
RESC modifies them on-line, without re-examining past
world states. Together, RESC's situatedness, immediate
commitments (despite the ambiguities), and its on-line
modification of commitments provide RESC its real-time
character.

In the following, we first describe the process that
RESC employs for tracking other agent's flexible and
reactive behaviors (Section 2). This process enables
RESC to be situated in its present as it tracks an
agent's actions. Subsequently, RESC's ambiguity res-
olution and real-time properties are described in Section
3. These descriptions are provided in concrete terms,
using an implementation of the pilot agents in a system
called TacAir-SoarfTambe et al., 1995], built using the
Soar architecture [Newell, 1990; Rosenbloom et al., 1991].
We assume some familiarity with Soar's problem-solving
model, which involves applying operators to states to
reach a desired state.

2 Tracking Flexible Goal-driven and
Reactive Behaviors

In an environment such as air-combat simulation, agents
possess similar behavioral flexibility and reactivity.
Thus, the (architectural) mechanisms that an agent em-
ploys in generating its own behaviors may be used for
tracking others' flexible and reactive behaviors. Con-
sider, for instance, D's tracking of L's behaviors in Fig-
ure 1-c. D generates its own behavior using the operator
hierarchy shown in Figure 2-a. (The solid lines indicate
the actual hierarchy, and the dashed lines indicate unse-
lected options.) Here, at the top-level, D is executing its
mission — to protect its home-base for a given time pe-
riod — via the execute-mission operator. Since the ter-
mination condition of this operator — completion of D's
mission — is not yet achieved, a subgoal is generated.2

D rejects options such as follow-flight-plan and run-away
in this subgoal in favor of the intercept operator, so äs
to combat L. In service of intercept, D selects employ-
missile in the next subgoal. However, since D has not
reached its missile firing range and position, it selects
get-firing-position in the next subgoal. Skipping to the
final subgoal, maintain-keading enables D to maintain

2 A Soar operator has termination conditions — if the op-
erator's application (or new sensor input) changes the state
so as to satisfy the termination conditions, then that opera-
tor and all of its subgoals are terminated. If the termination
conditions remain unsatisfied, a subgoal is created, within
which new operators are applied.

60

its heading, as seen in Figure 1-c.

EXECUTE-MISSION

1

INTERCEPT fOLLOW-FLGT-PLAN]
|_ RUN-AWAY J

'
EMPLOY-MISSILE \SEARCH-&-ACQUIRE\

"~~~-
| CHASE-OPPONENT 1

^___ L EVADE |

GET-FmiNG-POSmf ' ».

~~^
ACmEVE-PROXMTIY ~-*-

"~
J ^ ^ | MAINTAIN-HEAD1NG

D

(a) Operator Hierarchy

EXECUTE-MISSION

INTERCEPT \FOLLOW-FLGT-PLAN\
|_ RUN-AWAY \

'
EMPLOY-MISSILE | SEARCH-&-ACQUIRE\

' ~^^^^ I CHASE-OPPONENT 1

FBfAL-MISSL-UANVS
"""'—■•»» r---

POWT-AT-TARGET
' ■»*

' "■"•--,

*» START-MAINTN-TURN

STATE
DL

(b) Operator Hierarchy

Figure 2: Operator hierarchies: Solid lines indicate ac-
tual selections; dashed indicate unselected options.

The operators used for generating D's own actions,
such as in Figure 2-a, will be denoted with the subscript
D, e.g., interceptjy. Operator jy will denote an arbitrary
operator of D. Statejj will denote the global state shared
by all of these operators. It maintains all of the dynamic
sensor input regarding D's own aircraft, such as its head-
ing and altitude. It also maintains dynamic radar input
regarding L's aircraft, such as heading, range, collision
course and other geometric relationships. Additionally,
it maintains non-sensor information, e.g., D's missile ca-
pabilities. Together, statep and the operatorp hierar-
chy constitute the introspectable aspect of D, and in this
sense may be considered as D's model of its present self,
referred to as model j).

Model j) supports D's flexible/reactive behaviors via
its embedding within Soar; and in particular, via two
of Soar's architectural features: (i) a decision proce-
dure that supports flexibility by integrating all available
knowledge about absolute or relative worth of candidate
operators right before deciding to commit to a single op-
erator; (ii) termination conditions for operators that sup-

port reactivity by terminating operators in response to
the given situationfRosenbloom et al., 1991]. The point
here is not that these specific architectural features are
the only way to yield such behavior, but rather that there
are such features, and that they can be reused in track-
ing other agents' behaviors. To illustrate this re-use, we
assume for now that D and L possess an identical set
of maneuvers. (Note that this sameness of maneuvers is
not necessary; all that is required is for D to have an
accurate model of its opponent's maneuvers.)

Thus, D uses a hierarchy such as the one in Figure 2-
b to track L's behaviors. Here, the hierarchy (the solid
lines in Figure 2-b) represents D's model of L's current
operators in the situation of Figure 1-c. These operators
are denoted with the subscript DL. This operatorjjj^
hierarchy, and the statepj, that goes with it, constitute
D'smodelofLormodeljQj^. Within modelpj,, ezecvte-
mtssionpj^ denotes the operator that D uses to track
L's mission execution. Since L's mission is not yet com-
plete, D applies the interceptjyj, operator in the subgoal
to track L's intercept. The unselected alternatives here,
e.g., run-awayjy-^, indicate the ambiguity in tracking L's
actions (however, assume for now that this is accurately
resolved). In the next subgoal, employ-missilery^ is ap-
plied. Since L has reached its missile firing position, in
the next two subgoals, final-missile-maneuverry^ tracks
L's final missile maneuver, and point-at-targeijyj, tracks
L's turning to point at D. In the final subgoal, D ap-
plies the stari-&-maintain-tvrnjyrJ operator to statejjj^,
which does not (can not) actually cause L turn. Instead,
this operator predicts L's action and matches the pre-
diction against L's actual action. Thus, if L starts turn-
ing to point at D's aircraft, then there is a match with
modeljjT 's predictions — D believes L is turning to
point at its target, D, to fire a missile. When L's aircraft
turns sufficiently to point straight at D's aircraft (Figure
1-c), the termination condition of the point-at-targetjyj^
operator is satisfied, and it is terminated. A new oper-
ator, push-fire-buttonjyjj, is then applied in the subgoal
of final-missile-maneuverjyjj- This operator predicts a
missile firing, although the missile cannot actually be ob-
served. Statepj- maintains a representation of the mis-
sile, and marks it with a low likelihood. Following that,
the fpole-Tightryjj operator predicts L's right turn for an
fpole. When this prediction is matched with L's turn in
Figure 1-d, the missile's likelihood is changed to high.
D now attempts to evade the missile, with beam-rightry.
(D currently chooses arbitrarily between the execution
of operatorp and operatorj^T , as it generates its own
actions, while also tracking L^s actions.)

The above agent tracking process is related to pre-
vious work on model tracing in intelligent tutoring sys-
tems(ITS) for tracking student actions[Anderson et at,
1990; Ward, 1991]. However, that work has primarily
focused on static environments. A recently developed
ITS, REACTfffill and Johnson, 1994], extends model
tracing to a more dynamic environment. REACT relies
upon a plan-driven tracking strategy, and deals with the
more dynamic aspects of the domain as special cases. It
specifically abstracts away from tracking students' men-
tal states. In contrast, pilots appear to track their op-

61

ponents' behaviors in more detail. Such tracking is sup-
ported here via a uniform apparatus for the generation of
an agent's own flexible/reactive behaviors and tracking
other agents' behaviors. In particular, operatorjj and
operatorjjj^ are selected and terminated in the same
flexible manner. Thus, as statejjj^ changes, which it
does in reflecting the changing world situation, new
operatorsjjT may get selected in response. This is key
to RESC's situatedness — L's on-going actions are con-
tinually tracked in the context of the current statejjj,.
For further details on this tracking technique, please
see[Tambe and Rosenbloom, 1995].

3 Real-time Ambiguity Resolution
Ambiguity manifests itself in two forms in the agent
tracking process introduced in the previous section. One
form involves the alternative operators available for
tracking the other agent's actions, as seen in the dashed
boxes in Figure 2-b. Given these alternatives, it is diffi-
cult to make accurate selections of operatorj^, such
that their predictions successfully match L's actions.
Should an operatorjjj- selection be inaccurate, in typi-
cally results in a match failure (if not immediately, then
in some further operatorpj, application). Thus, in Fig-
ure 2-b, the operatoruL hierarchy predicts L will turn
to point at D's aircraft. Suppose this prediction is in-
accurate, and L turns in the opposite direction. This
difference in the anticipated and actual action leads to a
match failure, indicating an inaccuracy in tracking. Sim-
ilar match failures can also occur if L fails to begin (or
stop) turning or maintain heading as anticipated.

A second form of ambiguity is seen in statej}^.
Statej) L needs to maintain the same types of informa-
tion as are in statej). Here, there is ambiguity related to
both the dynamic sensor information and the static non-
sensor information. With respect to static information,
there are ambiguities about L's radar and missile capa-
bilities. Even if these are resolved, there are ambiguities
about dynamic information, such as whether L has de-
tected D on radar. For instance, in Figure 1-a, based
on the static radar range information, D assumes it has
arrived within L's radar range; but L may or may not
have detected D, depending on its radar's orientation.
Such ambiguities in statejjj, are intimately connected
to ambiguities in operatorjjL, since the operatorjjj- hi-
erarchy is dependent on tne current statejjj,. Tnus,
if D assumes it is not detected on L's radar, then the
intercepipL operator is ruled out, since there is nothing
for L to mtercept. In contrast, if D assumes L has de-
tected it, then interceptj^^ is a likely possibility. A sub-
goal of interceptor predicts L's turn to collision course,
which is matched by L's turn in Figure 1-a — D now be-
lieves L has detected it, and L is going to collision course
to intercept. Note that, if D believes that L has detected
it, statej)^ needs to maintain the various dynamic in-
puts that D believes L obtains from its radar regarding
D's heading, range, geometric relationships etc. Fortu-
nately, many of these quantities are symmetric and can
be reused from corresponding quantities in statejj.

It is difficult to resolve the above ambiguities using
methods that have been previously suggested in the

model tracing literature. Ward[Ward, 1991] notes that
previous model tracing systems have mostly relied on
communication with the modeled agent to resolve am-
biguities. In air-combat simulation, such communica-
tion with enemy pilots is clearly ruled out. Ward's solu-
tion in the absence of such information is an exhaustive
backtrack search of all of the different alternatives. In
the example in 2-b, this involves an attempt to execute
and match other operator hierarchies — generated by al-
ternatives such as run-awayj^jj or follow-flight-planry-^
— via a systematic backtrack search before committing
to interceptj^jj. Unfortunately, this search-then-commit
approach will very likely cause tracking to lag far be-
hind the rapidly changing world, precluding D from re-
sponding to L's maneuvers in real-time. Furthermore,
given the volume of dynamic information on statejjj^,
the maintenance of multiple old copies of statejjj^ for
backtracking could itself consume non-trivial amounts
of space and time. Parallel real-time search of alterna-
tive modelsTjT could eliminate the backtracking; how-
ever, we will locus on a sequential solution given the
implementation technology available to us. Further-
more, parallelism may not be adequate when faced with
the expected combinatorics in the number of alterna-
tives. Borrowing ambiguity resolution methods from the
plan recognition literature would be yet another possibil-
ity; but the computational costs (intractability) of tech-
niques such as automated deduction[Kautz and Allen,
1986] are a significant concern.

So instead, we propose a new approach called RESC
(REal-time Situated Commitments) that addresses the
above concerns. As seen earlier, RESC's situatedness
arises from its tracking of L's on-going actions and be-
haviors in the context of the current state DL RESC's
commitment is to a single modeljjf,, with a single
statepL that records the on-going world situation in
real-time and a single operatorjjj^ hierarchy, that pro-
vides an on-going interpretation of an opponent's ac-
tions. Given the intense real-time pressure, RESC does
not spend time trying to match alternatives; instead, it
just commits to a single operatorpj^ hierarchy, and any
facts inferred in statejjj- due to this hierarchy. It then
tries to use these commitments as context for tracking
L's future actions. However, in some cases, the commit-
ments may get withdrawn given RESC's situatedness —
as statej}j^ changes, it may satisfy the termination con-
ditions of an operatorjjj^ and thus cause it, and all of
its subgoals, to terminate.

When faced with ambiguity, it is possible that RESC
commits to an inaccurate operator!^ and statejjT,
leading to a match failure. RESC recovers from sucn
failures by relying on a method called single-state back-
tracking, that undoes some of its commitments, result-
ing in the generation of new operatorjjj^ hierarchies, in
real-time. Of course, if RESC makes more intelligent
commitments in the first place — by reducing the am-
biguity in the situation with which it is faced — there
will be less of a need for undoing its commitments. Sub-
section 3.1 first describes strategies — some general and
some domain specific — used for reducing ambiguities
in both statepjj and operatorjjj^. Subsection 3.2 then

62

describes single-state backtracking.

3.1 Reducing Ambiguities

There are two classes of strategies used in RESC to re-
solve ambiguities: active and passive. The active strate-
gies rely upon an agent's active participation in its en-
vironment to gather information to resolve ambiguities.
In particular, an automated pilot, such as D, can act in
its environment and force its opponent L to react and
provide disambiguating information. Consider again the
example in Figure 1-a. As discussed earlier, D faces am-
biguity in statejjj- about whether L's radar has detected
D. This gets resolved with L's turn to collision course.
Unfortunately, if L just happens to be on collision course,
it may not turn any further, and the ambiguity would
be more difficult to resolve. In such cases, D can ran-
domly turn 15-20°, as shown in Figure 1-b, causing L
to react if it wishes to maintain collision course. This
provides D sufficient disambiguating information — L's
radar has detected D. Unfortunately, D's actions in ser-
vice of active ambiguity resolution may interfere with
its other goals, such as firing a missile at L. In general,
such interference is difficult to resolve. Therefore, cur-
rently, active ambiguity resolution is based on a fixed set
of known maneuvers (supplied by human experts).

In contrast, passive ambiguity resolution strategies
rely on existing information to resolve ambiguities. One
key piece of information is that in this hostile environ-
ment, an opponent is likely to engage in the most harm-
ful maneuver. This information is used in the form of
a worst case strategy for disambiguation. Thus, given
a choice, D always selects the worst-case operator]^
(from its own perspective) while tracking L's actions.
For instance, if there is ambiguity between run-awayjy^
or interceptj^r , D will select interceptj^ j^, which is more
harmful. Similarly, D resolves ambiguity in the static in-
formation in statej)£ via the worst-case strategy, e.g., it
assumes that L's aircraft is carrying the most powerful
missiles and radar that it can carry. Unfortunately, this
worst-case strategy can lead to overly pessimistic behav-
ior. In the absolute worst-case, the only option for D is
to run away. Therefore, D applies it selectively, typically
in cases where it has to disambiguate rapidly, and yet no
other means are available. Thus, as seen above, D does
not automatically assume detection by L's radar, even
though that would be the worst-case assumption.

A second passive ambiguity resolution strategy is test
incorporation[Bennett and Dietterich, 1986]. The key
idea is to generate fewer incorrect alternatives in ambigu-
ous situations. In particular, modeljjj, generates alter-
native operatorsjj ^ that are tested by matching against
L's actual actions. Observations regarding these actions
can be used to avoid generating alternatives that are
guaranteed to lead to match failures. For instance, in
Figure 1-d, fpole-rigktj^-^ and fpole-leftj^^ are two al-
ternatives available to D in tracking L's actions. If D
already sees L turning to its right, then fpole-leftjyr can
be eliminated, since it would be guaranteed to lead to a
match failure. Test incorporation relies on such spatial
relationships.

A third passive ambiguity resolution strategy is goal

incorporation (e.g., see [Van Beek and Cohen, 1991]).
The key idea here is to resolve ambiguities only to the ex-
tent necessitated by an agent's goals. For example, given
the reality of the simulation environment, L's aircraft of-
ten unintentionally deviates from its intended heading.
Given such deviations, L sometimes makes corrections
to its headings. However, D does not really need to
track and disambiguate these small deviations and cor-
rective actions. It therefore uses fuzz-box filters that dis-
regard specified deviations in L's actions. For instance,
for point-at-targetjijj, which tracks L's pointing maneu-
ver (Figure 1-c), the fuzz-box filter disregards 5° of de-
viation in L's heading. Such filtering also helps to avoid
tracking of detailed aspects of statej^, and avoids am-
biguities there.

3.2 Single-State Backtracking in RESC

Based on the above disambiguation strategies, RESC
commits to a single statejjr and a single operator JJ ^ hi-
erarchy, which track L's actions as described in Section 2.
However, should this cause a match failure, single-state
backtracking is used to undo some commitments. As its
name suggests, this backtracking takes place within the
context of a single statejj^. Starting from the bottom
of the operatorj) £ hierarchy, operators are terminated
one by one in an attempt to get alternatives to take their
place. Some alternatives do get installed in the hierar-
chy, and possibly change statejjT, but lead to match
failures. These are also replaced^ until some alterna-
tive leads to an operatorj^ hierarchy that culminates
in match success.3

Why is this process real-time? The main reason is
that backtracking occurs without a re-examination of
past sensor input or mental recreation of older statesj^T .
In particular, while backtrack search would normally in-
volve revisiting old statespL and reconsidering the dif-
ferent operatorsjjL possible in each of those states —
creating an opening for combinatorics — RESC com-
pletely avoids such computation. Furthermore, although
RESC does backtrack over the operator hierarchy, there
are three factors that ameliorate the combinatorics there.
First, given RESC's situatedness, backtracking remains
tied to the present statepj^. Thus, while a match fail-
ure is recognized and the backtrack process begun, L and
D's aircraft continue to move and turn, changing their
speeds, headings, altitudes, and relative geometric rela-
tionships (e.g., range, collision course, etc). Statejjj^
is continuously updated with this latest information.
The backtracking process takes place in the context of
this continuously changing state. Thus, only those al-
ternative operatorsj)^ that are relevant to the current
statej^L get applied. Similarly, in some cases, changes
in statejjjj cause portions of the operatorj^ hierarchy
to terminate automatically during the backtrack process.
In other words, RESC is continuously dragged forward
as the world changes. Second, RESC does not oblige
D to address the match failure before D can execute

3 In a few cases, there are pending changes related to ambi-
guities in statej)L> e.g., has L detected D? These are applied
first, hoping they cause changes to operatorjjT and lead to
success.

63

any of its own operators^). Thus D is free to act to
the extent it can. Finally, indeed, if the world were to
magically become static, RESC's strategy will result in
a complex search, although still within the context of a
single statejjT . However, it is unclear if this is necessar-
ily problematic — a static world should possibly merit
a more thorough search.

Let us consider some examples of single-state back-
tracking. As a simple example, suppose D has com-
mited to the modelpj, in Figure 2-b. Initially, point-at-
targetryT has match success in that, as predicted, L in-
deed starts turning towards D(see Figure 3-a for an illus-
tration). However, L really has decided to run away; so
it continues turning 180° without stopping when point-
ing at D (Figure 3-b). This leads to a match failure
in the operatorjjT hierarchy. Single-state backtracking
now ensues, terminating operators beginning from the
bottom of the hierarchy. Finally, interceptjyj^ is termi-
nated and replaced by run-awayryVj- This predicts L
to be turning towards its home-base, which successfully
matches L's actions (Figure 3-c). Thus, D successfully
applies run-awayiyjj, predicting and matching L's ac-
tions, without mentally recreating the statejjj^ in which
L may have initiated its run-away maneuver.

** *

w

& #

w <c)

Figure 3: L continues to turn to run away.

A slightly more complex example involves situations
where L is engaging in a beam maneuver. Here, D ini-
tially matches fpole-right-Qr. and even infers L's missile
firing, as part of statejjT . However, as L keeps turning,
there is soon a match failure, causing D to backtrack
until beam-rightjyr successfully matches. There are two
key points here. First, again D is successful in applying
beam-right^, without mentally recreating the statep^
in which L may have initiated its beam maneuver. Sec-
ond, D's earlier inference of L's missile firing is not re-
moved, even though it is based on a sequence of operators
that eventually led to a match failure. This is because it
is difficult for D to decide if L was initially maneuvering
to fire a missile and then switched to beam, or if it was
always engaged in beam. Not knowing any better, D
does not eliminate the earlier inference from stateJJJ^.
Fortunately, when aircraft turn 90° to beam, they can-
not provide radar guidance to their missiles. Therefore,
with L's beam, D infers that the missile that it ear-
lier inferred on statejjj, has lost guidance and become
harmless. The end result is identical to a case where
D had successfully tracked L's beam maneuver, with-
out the failed intermediate inference of an fpole-rightj^j^
maneuver.

We have so far found RESC's single-state backtrack-
ing to be successful in the air-combat simulation domain
(see Section 4). Given the potential application of this
approach for other areas of real-time comprehension, it

is useful to analyze the reasons behind its success. To-
wards this end, consider first the following simplified and
abstract characterization of a successful application of
single-state backtracking: L initiates some maneuver ß
at time TO. However, at TO, D attempts to match it by
applying an operator opj^ to stateSV (which denotes

stateDL at time TO). At time TO+T, in stateJ^ D
recognizes a match failure with otjy^. It backtracks and
applies ßj^jj to state£jr^T. The key observation here is
that despite the time delay r and the intervening ap-
plication of opj,, /?DL k successful in predicting and
matching L's maneuvers, as though it were applied to
statejjV. Based on this observation, in terms of opera-
tor preconditions and effects, we can infer at least three
requirements that need to be met for single-state back-
tracking to work. In the following, we list these require-
ments, and illustrate how pilot agents currently adhere
to them:

1. The preconditions ofßry^ are satisfied in statej^jj^

tn much the same way as in statej^: For pilot
agents, operator preconditions are expressed so they
do not test specific positions of aircraft, but rather
abstracted features of statejjj^ — similar to the
fuzz-boxes in Section 3.1 — that are unlikely to
change in r. That is, abstracted features tested by
preconditions change at a rate smaller than 1/r.

2. The effects of /?pL when applied to state^r"7 are
equivalent to the effects of ßm when applied to
statej)V: This is achieved by expressing operator
effects relative to some feature of statejjr that is
unlikely to have changed in the intervening time
period r. For instance, the effect of run-awayT)^
predicts L is headed towards its home base — the
location of this base is unlikely to change within
r. Similarly, the effects of operators such as beam-
righinjj are expressed in relative terms as L turning
to achieve 90° angle-off, which is an angle formed
by L's heading relative to the straight line joining
D and L (while this line does change its position in
r, given the range between D and L the change is
small, and gets absorbed by the fuzz-boxes). If the
effects were expressed instead as turning 90° from
L's current heading, they would have provided very
different results at TO and T0+r, defeating single-
state backtracking. Overall, the above seems possi-
ble because operators in this environment typically
strive to achieve positions relative to slowly chang-
ing reference points, such as turning to a particular
heading relative to an opponent's aircraft, or rela-
tive to a waypoint such as the home-base.

3. The effects o/api, as applied to state^j- are elim-
inated at some time TO + r before they cause incon-
sistencies in D '5 response: As seen in an example
above, even though L's missile firing was inferred,
and this inference was not "cleaned up" upon recog-
nition of a match failure, L's future maneuver auto-
matically nullifies the effect of that inference. For-
tunately, typical operatorj)^ applications do not

64

commit to such inferences on state JJJ,. For those
that do commit, these commitments get removed
by future maneuvers or become irrelevant.

In some cases, L quickly terminates its maneuver ß
within time period r, and initiates a new one 7 at time
TO+T. Here, given RESC's situatedness, at time TO+T,
D completely skips tracking ßjyx^, and tracks TDJ, in-
stead. Fortunately, since D's initial attempt is to apply
worst-case operatorsJJT , there is at least the assurance
that what is skipped (/?j)i,) is not among the worst of
the possibilities.

4 Implementation and Evaluation
To understand the effectiveness of the RESC approach,
we have implemented it as part of an experimental vari-
ant of TacAir-Soar[Tambe et al, 1995J. The current
TacAir-Soar system contains about 2000 rules, and au-
tomated pilots based on it have participated in combat
exercises with expert human pilots. Our experimental
version — created to investigate the RESC approach —
contains about 950 of these rules. Proven techniques
from this experimental version, called TacAir-Soar^50

are transferred back into the original TacAir-Soar.
There are at least two aspects to understanding the

effectiveness of TacAir-Soar*"550. The first aspect is
whether the current approach enables D, the TacAir-
Soar11550 pilot agent, to track its opponents' actions
accurately in real-time. We conducted two sets of exper-
iments to address this issue. The first set involved run-
ning Soar-vs-Soar air-combat simulation scenarios (as
outlined by the human experts). The results from these
experiments are presented in Table 1.

Sen.

num
Num

oppnts

Total

opertrs

% operators

agent trade

% of colm 2

in match fail

1 1 37 8% 0%

2 1 133 45% 17%

3 2 167 50% 16%

4 2 175 54% 17%

S 4 142 63% 11%

Table 1: Results of Soar-vs-Soar experiments.

The first column lists the scenario number. The sec-
ond column lists the number of opponents that D faces
in each scenario — this varies from one to four in these
scenarios. The third column indicates the total num-
ber of D's operator executions in each scenario. This
includes operators for D's own actions, as well as for
tracking opponent actions. The total number provides
some indication of the comparative complexity of the
different scenarios. Note that these operators are not all
applied in a sequence at regular intervals; D often waits
in between applications as it tries to get into different
positions. Indeed, despite the differences in the num-
ber of operators, the total time per scenario is about
the same, approx 5 minutes. The fourth column shows
the percentage of operator executions involved in agent
tracking. This percentage clearly depends on the num-
ber of maneuvers that the opponents execute, and the
number of opponents. The key point here is that agent

tracking is a non-trivial task for D. Furthermore, higher
percentages of operator executions may be dedicated to
agent tracking with increased numbers of opponents.

The fifth column shows the percentage of agent track-
ing operators involved in match failures (counting oper-
ators at the bottom of the hierarchy that encountered
the failure, but not their parents). The main point here
is that the overall percentage of these operator is low; at
most 17% of the agent tracking operators are involved
in match failures.

In all of these cases, D is successful in tracking op-
ponents in real-time so as to react appropriately. Even
in cases where D encounters match failures, it is able
to backtrack to track the on-going activities in real-time
and respond appropriately. However, as the number of
opponents increases, D does face resource contention
problems. With four opponents, it is unable to track
the actions of all of the agents in time, and gets shot
down (hence fewer operators). This resource contention
issue is under active investigation[Tambe, 1995].

Our second set of experiments involved Soar-vs-
ModSAF simulated air-combat scenarios. ModSAF-
based[Calder ei al., 1993] pilot agents are controlled
by finite state machines combined with arbitrary pieces
of code, and do not exhibit high behavioral flexibility.
While D was in general successful in agent tracking in
these experiments — it did recognize the maneuvers in
real-time and respond to them — one interesting issue
did come up. In particular, in one of the scenarios here,
there was a substantial mismatch in D's worst assump-
tions regarding its opponent's missile capabilities and the
actual capabilities — leading to tracking failures. Deal-
ing with model mismatch is also an issue for future work.

The second aspect to understanding the effectiveness
of TacAir-Soar^50 is some quantitative estimate of the
impact of agent tracking on improving D 's overall perfor-
mance. In general, this is a difficult issue to address (see
for instance the debate in [Hanks tt al., 1993]). Nonethe-
less, we can at least list some of the types of benefits
that D accrues from this capability. First, agent track-
ing is crucial for D's survival. Indeed, it is based on
agent tracking that D can recognize an opponent's mis-
sile firing behavior and evade it. Second, agent tracking
improves D's overall understanding of a situation, so it
can act/react more intelligently. For instance, if an op-
ponent is understood to be running away, D can chase
it down, which would be inappropriate if the opponent
is not really running away. Similarly, if D is about to
fire a missile, and it recognizes that the opponent is also
about to do the same, then it can be more tolerant of
small errors in its own missile firing position so that it
can fire first. Finally, agent tracking helps D in pro-
viding a better explanation of its behaviors to human
experts. (Such an explanation capability is currently
being developed[Johnson, 1994]). If human experts see
D as performing its task with an inaccurate understand-
ing of opponents' actions, they will not have sufficient
confidence to actually use it in training.

65

5 Lessons Learned
This paper presented an approach called RESC, for
agent tracking in real-time dynamic environments. Our
investigation was based on a real-world synthetic envi-
ronment that has already been used in a large-scale op-
erational military exercise[Tambe et al., 1995]. Lessons
learned from this investigation — as embodied in RESC
— are as follows:

• To track other agents' flexible and reactive behav-
iors: Reuse the architectural mechanisms that sup-
port an agent's own flexible/reactive behaviors in
service of tracking others' behaviors.

• To address ambiguities in real-time: Quickly com-
mit to a single interpretation, and use single-state
backtracking to recover from erroneous commit-
ments.

• To address real-time issues in general: Keep track-
ing firmly tied to the now, i.e., to the present state.

One key issue for future work is investigating the gen-
erality of these lessons by applying RESC to other com-
petitive and collaborative multi-agent domains. One
candidate that has been suggested is a real-time multi-
robot domain where robots track other robots or humans
to collaborate in a task by observation (rather than by
communication)[Kuniyoshi et al, 1994]. Beyond agent
tracking, there is some indication that RESC could apply
in other real-time comprehension tasks. For instance, a
RESC-type strategy has been previously used in a real-
time language comprehension system[Lewis, 1993]. This
system also commits to a single interpretation of an in-
put sentence despite ambiguity, and attempts to repair
the interpretation in real-time when faced with parsing
difficulties. We hope that investigating these broader
applications will lead to an improved understanding of
agent tracking and comprehension.

References
[Anderson et al., 1990] J. R. Anderson, C. F. Boyle,

A. T. Corbett, asd M. W. Lewis. Cognitive mod-
eling and intelligent tutoring. Artificial Intelligence,
42:7-49,1990.

[Azarewicz et al., 1986] J. Azarewicz, G. Fala, R. Fink,
and C. Heithecker. Plan recognition for airborne tac-
tical decision making. In Proceedings of the National
Conference on Artificial Intelligence, pages 805-811.
Menlo Park, Calif.: AAAI press, 1986.

[Bennett and Dietterich, 1986] J. S. Bennett and T. G.
Dietterich. The test incorporation hypothesis and the
weak methods. Technical Report 86-30-4, Department
of Computer Science, Oregon State University, 1986.

[Calder et al, 1993] R. B. Calder, J. E. Smith, A. J.
Courtemanche, J. M. F. Mar, and A. Z. Ceranowicz.
Modsaf behavior simulation and control. In Proceed-
ings of the Conference on Computer Generated Forces
and Behavioral Representation, 1993.

[Hanks et al., 1993] S. Hanks, M. E. Pollack, and P. R.
Cohen. Benchmarks, test beds, controlled experimen-
tation, and the design of agent architectures. AI Mag-
azine, 14(4):17-42,1993.

[Hill and Johnson, 1994] R. Hill and W. L. Johnson. Sit-
uated plan attribution for intelligent tutoring. In Pro-
ceedings of the National Conference on Artificial In-
telligence. Menlo Park, Calif.: AAAI press, 1994.

[Johnson, 1994] W. L. Johnson. Agents that learn to ex-
plain themselves. In Proceedings of the National Con-
ference on Artificial Intelligence, Seattle, WA, August
1994. Menlo Park, Calif.: AAAI press.

[Kautz and Allen, 1986] A. Kautz and J. F. Allen. Gen-
eralized plan recognition. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages 32-
37. Menlo Park, Calif.: AAAI press, 1986.

[Kuniyoshi et al., 1994] Y. Kuniyoshi, S. Rougeaux,
M. Ishii, N. Kita, S. Sakane, and M. Kakikura. Coop-
eration by observation - the framework and the basic
task pattern. In Proceedings of the IEEE International
Conference on Robotics and Automation, May 1994.

[Lewis, 1993] R. L. Lewis. An architecturally-based the-
ory of human sentence comprehension. In Proceedings
of the Eleventh Annual Conference of the Cognitive
Science Society, 1993.

[Newell, 1990] A. Newell. Unified Theories of Cognition.
Harvard Univ. Press, Cambridge, Mass., 1990.

[Rich and Knight, 1990] E. Rich and K. Knight. Artifi-
cial Intelligence. McGraw-Hill, New York, NY, 1990.

[Rosenbloom et al, 1991] P. S. Rosenbloom, J. E. Laird,
A. Newell, , and R. McCarl. A preliminary analysis of
the soar architecture as a basis for general intelligence.
Artificial Intelligence, 47(l-3):289-325,1991.

[Tambe and Rosenbloom, 1995]
M. Tambe and P. S. Rosenbloom. Event tracking
in a dynamic multi-agent environment. Computa-
tional Intelligence, (To appear), 1995. WWW: http:
//www.isi.edu/soar/tambe/event.html.

[Tambe et al, 1995]
M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E.
Laird, P. S. Rosenbloom, and K. Schwamb. Intelli-
gent agents for interactive simulation environments.
AI Magazine, 16(1), Spring 1995.

[Tambe, 1995] M. Tambe. Recursive agent and agent-
group tracking in a real-time dynamic environment. In
Proceedings of the International Conference on Multi-
agent systems (ICMAS), June 1995.

[Van Beek and Cohen, 1991] P. Van Beek and R. Co-
hen. Resolving plan ambiguity for cooperative re-
sponse generation. In Proceedings of International
Joint Conference on Artificial Intelligence, pages 938-
944, 1991.

[Ward, 1991] B. Ward. ET-Soar: Toward an ITS for
Theory-Based Representations. PhD thesis, School of
Computer Science, Carnegie Mellon Univ., 1991.

66

Building Intelligent Pilots for Simulated Rotary Wing Aircraft

Milind Tambe, Karl Schwamb and Paul S. Rosenbloom
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
email: {tambe, schwamb, rosenbloom}@isi.edu

1. Abstract
The Soar/IFOR project has been developing

intelligent pilot agents (henceforth IPs) for
participation in simulated battlefield environments.
While previously the project was mainly focused on
IPs for fixed-wing aircraft (FWA), more recently, the
project has also started developing IPs for rotary-
wing aircraft (RWA). This paper presents a
preliminary report on the development of IPs for
RWA. It focuses on two important issues that arise in
mis development The first is a requirement for
reasoning about the terrain — when compared to an
FWA IP, an RWA IP needs to fly much closer to the
terrain and in general take advantage of the terrain for
cover and concealment The second issue relates to
code and concept sharing between the FWA and
RWA IPs. While sharing promises to cut down the
development time for RWA IPs by taking advantage
of our previous work for the FWA, it is not
straightforward. The paper discusses the two issues in
some detail and presents our initial resolutions of
these issues.

2. Introduction
The Soar/IFOR project has been developing

intelligent pilot agents (IPs) for simulated battlefield
environments (Laird et aL, 1995, Rosenbloom, et at,
1994, Tambe et aL, 1995). Until Summer 1994, the
project was focused on building IPs for simulated
fixed-wing aircraft (FWA), including air-to-air
fighters and ground-attack aircraft Since July 1994,
we have begun developing IPs for simulated rotary-
wing aircraft (RWA), specifically, AH-64 Apache
attack helicopters.

While there are similarities in an RWA and an
FWA pilot's missions—e.g., employing weapons on
targets, flying mission-specified routes — there are
also some important differences. One key difference
is reasoning about the terrain. For example, an RWA
pilot's mission can involve flying Nap-of-the-earth
(NOE), where it needs to fly only about 25 feet above
ground level, while avoiding obstacles. It may also
involve flying through a valley, or around a forested
region. The mission may also involve hiding
(masking) behind a ridge, popping up to spot enemy
targets, and remasking in a new hiding position.
Figure 1 provides an illustration of this type of terrain
reasoning. It presents a snapshot taken from
ModSAFs plan-view display (Calder et aL, 1993), of

a typical scenario involving Soar-based RWA IPs.
There are two RWA in the scenario, just behind the
ridge, indicated by the contour lines. The other
vehicles in the figure are a convoy of "enemy"
ground vehicles—tanks and anti-aircraft vehicles—
controlled by ModSAF. The RWA are
approximately 25 miles from the convoy. The IPs
have hidden their helicopters behind the ridge (their
approximate hiding area is specified to them in
advance). They unmask these helicopters by popping
out from behind the ridge to launch missiles at the
enemy vehicles, and quickly remask (hide) by
dipping behind the ridge to survive retaliatory
attacks. They subsequently change their hiding
position to avoid predictability when they pop out
later.

giSiPg ÜÜgi

m

Alii

PfiSl§
gP1

m

Wtä

um
■

H
«i vuacaefe; *2üL»£ B W «Mläk te:

Figure 1: A snapshot of ModSAFs simulation of an
air-to-ground combat situation.

Thus, the development of RWA IPs brings up the
novel issue of terrain reasoning, not addressed in
previous work on Soar/IFOR agents. There has been
much work on terrain reasoning in ModSAF in their
development of semi-automated forces or SAFs

67

(Calder et al., 1993). That work has so far primarily
focused on ground-based SAFs (e.g., (Longtin,
1994)), although there is a recent effort focused on
terrain reasoning for RWA (Tan, 1995). Outside the
arena of automated forces, terrain reasoning in the
form of route planning and execution has been
addressed extensively in AI and Robotics. The focus
of much of this work is on 2D routes (Denton and
Froeberg, 1984, Khatib, 1986, Lozano-Perez and
Wesley, 1979, Mitchell, 1990) — and this category
includes some previous work within Soar (Stobie et
al., 1992) — although some efforts have also
attacked the 3D route planning problem (Böse et al.,
1987, Rao and Arkin, 1989). Other aspects of terrain
reasoning such as tactical situation assessment
(McDermott and Gelsey, 1987) and hiding (Stobie et
aL, 1992) have also received some attention, although
not nearly as much as route planning. As discussed in
Section 3, the pure route planning approaches from
mis literature are unlikely to address the terrain
reasoning challenge facing the RWA IPs, which is to
accomplish these tasks in real-time, given a realistic
3D terrain database. A hybrid solution combining
some abstract plans with reactivity is currently being
investigated.

Given the similarities between the FWA and RWA
IPs, concept and code sharing between the two is a
real possibility. Sharing would speed up
development of RWA IPs by taking advantage of our
previous work on FWA. However, the differences —
such as the terrain reasoning capability above —
imply that sharing is not straightforward. There have
been some previous efforts aimed at facilitating reuse
of code and concepts among Soar systems. These
efforts have typically focused on reuse of individual
capabilities, such as inductive learning (Rosenbloom
and Aasman, 1990), or natural language (Lewis,
1993, Rubinoff and Lehman, 1994) capabilities. The
novel issue here is that a large fraction of the FWA IP
structure is potentially reusable in developing RWA
IPs and such reuse needs to be facilitated.

The rest of this paper provides more details on
these two issues. Section 3 focuses on terrain
reasoning. Section 4 discusses the issue of code and
concept sharing between Soar-based FWA and RWA
IPs. We will assume some familiarity with the Soar
architecture (Laird, Newell, and Rosenbloom, 1987,
Rosenbloom, et al., 1991).

3. Terrain Reasoning
The overall terrain reasoning tasks for an RWA IP

may be subdivided into two categories. The first is to
fly from a given source to a destination, while
abiding by mission specified constraints regarding
the flight methods. A flight method primarily
specifies maintenance of a certain air-speed and
altitude above ground level. In particular, a
high-level flight requires that the RWA fly more than

200 feet above ground level with air-speed as high as
145 knots. A low-level flight requires that the RWA
fly 100-200 feet above ground level, while
maintaining a maximum air-speed of 100 knots. A
contour flight requires the RWA to fly between
25-100 feet above ground level, but with a maximum
air-speed of 70 knots. An NOE flight requires the
RWA to fly within just 25 feet above ground level,
with a maximum air-speed of 40 knots. Additionally,
an NOE flight may require that an RWA fly through
a valley along a hillside, or through a narrow clear
corridor in a forested region. The second category of
terrain reasoning tasks involves an RWA IP's
activities once it successfully follows its route to its
battle area, and possibly engages enemy vehicles. Its
activities in this area involve selecting and occupying
good hiding positions (behind a ridge or a forested
region) and flying between hiding positions while
remaining concealed from a possibly mobile enemy.
It may also involve reasoning about possible enemy
hiding positions.

For both categories of tasks, one key issue for an
RWA IP is to execute them in the context of a large-
scale and realistic 3D terrain database, with features
such as rivers, ridges, valleys, hills and forested
regions. A second key issue is that given its
complexity, the cost of sensing and processing large
tracts of the terrain database is non-trivial. A third
related issue is that an IP has to exhibit human-like
behavior in performing these terrain reasoning tasks.
Thus, it should not make use of information that a
human pilot is unlikely to obtain. For example, as
with a human pilot, an IP should plan routes using a
map of the terrain database (which possibly may be
inaccurate), rather than using the actual terrain
database (which would always be 100% accurate). A
final issue is that an IP has to perform its tasks in
real-time. The following two subsections illustrate
how these issues are addressed for each of the two
types of tasks above.

3.1. Route Flying
For die task of route flying, one possible approach

for addressing the above issues would be to use one
of a variety of path-planning methods that provides a
very detailed 3D point-to-point route, with little need
or freedom to modify the given route (Stobie et al.,
1992, Böse et al., 1987, Rao and Arkin, 1989, Denton
and Froeberg, 1984). One such approach, based on
weighted-region path planning (Mitchell, 1990), is to
conceptually divide a map of the terrain into 3D cells
(cubes), assign an appropriate cost to each cell that
reflects mission-specified constraints, and then search
for a minimum cost path through the cells. One
advantage of such an approach is that an RWA IP
need not sense the terrain database in any detail, but
rather just enough to follow its plan. In addition, the

68

low sensing overhead would facilitate real-time task
performance. However, there are several problems
with such an approach. First given the complexity of
the terrain, this approach would require a significant
initial computational effort to create and then search
the cells. Second, it could be wasteful given the
realism of the RWA model and its flight controls —
it will not be possible for a Soar-based IP to precisely
control an RWA to follow such a detailed route, and
it will end up having to reactively improvise the path
orreplan. The original planner could potentially take
these realistic flight controls into account when
developing a plan — so that no on-line replanning
may be required — but that would further increase
the complexity of planning. Third, if the map of the
terrain is inaccurate or incomplete, the plan generated
could be inaccurate as well. Even if the map were
completely accurate (or if the IP were using the
terrain database itself rather than a map), there could
still be deviations from the planned route caused by
an unexpected encounter with hostile or friendly
vehicles. Thus, an IP may not be able to rely on just
its original planned route; it may need to replan.
Finally, human pilots typically do not rely on such
detailed plans; and thus in forcing IPs to follow such
plans, we are likely deviating from our goal of
building human-like IPs.

So instead, a Soar-based IP follows a hybrid
strategy that combines a plan-based and reactive
strategy. In particular, it relies on more abstract route
plans, that provide it just two to three intermediate
points.1 The IP then executes these route plans while
reacting to sensory information that enables it to
abide by the mission specified constraints. For ideal
human-like IPs, this sensory information should be
precisely what a human pilot would obtain visually
by looking out the window. Unfortunately, for an IP,
such visual processing is likely to be extremely
complex and expensive. Therefore, special
inexpensive sensors have been designed that
approximate such visual processing. One such sensor
is the look-ahead altitude sensor or LAS sensor. LAS
is slaved to the parameters supplied by the IP. The IP
sets parameters for LAS that specify a lookahead
range and orientation, which in turn specifies a line
segment of specific length and orientation originating
from the IP's current location.- Once these
parameters are set, LAS scans the terrain database
repeatedly (in fact, each time ModSAF schedules the
agent for execution), and returns the highest altitude
value along the specified line segment For instance,
to fly NOE, an IP sets LAS's parameters to a
lookahead range of 50 meters, and orientation in the

direction of its flight The pilot reacts to LAS's
response by modifying the altitude of its helicopter to
be approximately 25 feet above the highest point2

The top half of Figure 2 shows a pilot agent
making use of LAS to fly NOE. The shaded portion
in the figure is a profile of the terrain, while the
dashed line is a profile of the helicopter flying NOE.
The straight lines indicate LAS's lookahead range
while scanning the database. The bottom half of
Figure 2 indicates a longer lookahead range, and
change in the flight profile that that results.

Figure 2: Illustrations of lookahead altitude sensor. LAS scans
the terrain database each time the agent Is scheduled
for execution (illustrations not from an actual run).

The precise value of the lookahead range is
determined to a large extent by the speed of the
RWA. In particular, for an NOE flight an IP
currently flies conservatively at a speed of 20 knots.
With 50 meters lookahead, that gives it about 5
seconds to change its altitude. The other flight
methods, specifically contour, low-level and high-
level flight require that the RWA fly at a higher
speed. This in turn requires that the IP set a longer
lookahead range to give itself more time to react
Speed is however not the only factor determining the
lookahead range. It is also dependent on the type of
flight profile desired. For instance, at its speed of 80
knots, an IP could potentially sustain the altitude
required for its low-level flight with a lookahead of
just 200-300 meters. However, the flight profile
generated follows the terrain much too closely—it is
not as smooth as the flight profile that results from a
human pilot's low-level flight (at least as indicated
by the experts). Therefore, the low-level flight uses a
much longer lookahead range of 1500 meters. The
high-level flight uses a lookahead range of 5000
meters.

Unfortunately, long lookahead ranges in LAS
could potentially hinder an IP's real-time
performance. Therefore, to lower its cost, LAS
samples precisely 100 points along the specified line

'At present, these abstract routes are provided by a human;
although given mat they are abstract, planning these routes is
expected to be much less complex.

2RWA agents In ModSAF appear to follow a similar technique
(Tan, 1995).

69

segment irrespective of the lookahead range. Thus,
despite the variation in the lookahead range in Figure
2, LAS will scan precisely 100 points. This sampling
resolution may appear to be very low, with the
potential of missing high altitude cliffs. However,
LAS's repeated scanning in effect improves its
sampling resolution. In particular, since an RWA
progresses towards its destination between two scans,
successive scans sample slightly different points. In
fact, each successive scan samples 99 points in the
neighborhood of the points from its previous scan (on
the same line segment), and one new point This
resolution could still be insufficient for some types
terrain. For instance, if the terrain is an urban
landscape with a sparse population of pin-shaped
high-altitude structures,3 there is a small possibility
that LAS may miss those in its scanning. In such
cases, there may be a need to increase the sampling
resolution. However, the 100 point scans have so far
proved adequate over the terrain database used in our
experiments (the RWA have not crashed).

Figure 3 presents a flight profile from an actual run
of a Soar-based RWA using the contour flight
method. Figure 4 presents a flight profile from
another run of a Soar-based RWA over
approximately the same terrain, but using the NOE
flight method. The shaded portion indicates the
terrain, while the dashed line indicates the actual
flight profile. IPs smoothen out the flight by using
fuzz-boxes (McDermott and Davis, 1984) to avoid
excessive altitude adjustments.

1000

980

E

960

940

3
920

Kill 111
111111

900

880

860

i .»----I—>-. i i i

ground
RWA

II ill»
11111

II ll 111
III 1111
tint11
n 11111
niti ii
1111111
II i II 11
i n 1111
1111111
1111111
1111111
1111111
1111111
in in i
1111111
1111111
i it in i
1111111
1111111
in 1111
1111111
1111111

111111111111\
i i i t i i t i i i i i y,
II in ti mi 11\
11111111111111\
II111111 It III11\
111II11II111111 k
1111II11111111tl\
it inn II I I II I III
111111111111111 n 111 ■ 1111111\
11111111111111111111111111111,
111111111 II 111111111111111111\
II 1111 II 1111111111 II 1111111111
1111111111111111111 II 11111
11111111111111 n 111 n 11111 II 11
11111111111111111111111111 n i ■
II in ti II i nit inn it 111 mil i j
111111111111 u i u u 111111 ii u i
n i m11 u tII 11111 uimi it1111
n 111 n i M in i ii 11 in II 11 in 111
II u itin i im inn II ininii 11
1111 u 111 II u i it i u II i u i u u i
n i mi ii inn it i u ii in i tin ill
u11u11it u u I II II I I 11 I II I II I I I
 it it u uiuI 11u I II II ti I I III

in in u
iliinli

0 5 10 15 20 25 30 35 40 45 50
Simulator ticks

Figure 3: Illustration of a contour flight
from an actual run.

Similar low-cost, LAS-type sensors approximating
a human pilot's visual input are currently being
designed to enable the RWA pilots to fly through
valleys.

8»

<5

(D
■D
3

1000

980

960

940

920

900

880

860

ground
RWA

NtMIUIUMMtUin
HtllllllllllHIUIUUIHninilllUIIUIIIHIUIUHUlHIHUmtllUltlUlltnilllllJl

IUUIUHUIIUU1
UJUIIIIHUJIflllltUlltltlUHIIIIHUUIttlHfUUUIimiMIUHMIMIIiailllllMllUl^
UIHIMHIIUJIIIUHI
IIIWIllllllllllllUMi
MIHtltlllUfllHINNIUUIItMlltlllUUimi

IIIIIUUHI
HntUIIHIKIUHIllMHItMMtnunil

»uttiHuiri
IUIUUUIIL

iHuainniUBiuniiioKiiadiiiiimiiuiuiuiiiiä
mwiliiKliiiuiu Hiimaiinft

HiimtiiiiiniiiNufmiiV
unmuNiiNiiiiM iiuNuiiauuianitnuili

iHiniläk
aiHiuiuuuiiiiauiuiimuiniiiiiuiuiiiitiaaiiiiaaiiiBiiiiitiiiiiuBiHiuiuiiuiipiitiiuiu

3A clock tower would be one example of such a structure.

0 20 40 60 80 100 120
Simulator ticks

Figure 4: Illustration of an NOE flight
from an actual run.

3.2. Hiding
Once an RWA IP reaches its mission-specified

battle area, it needs to engage in hiding-related tasks.
In general, a battle area could be of an arbitrary
(convex) shape, or specified in terms of landmarks,
such as trees or rocks. The IP should be capable of
locating good hiding positions within this area and
move between hiding positions while remaining
concealed from its enemy. This second terrain
reasoning capability, at least at this level of
generality, is very much an issue for future research.
At present, we have restricted the battle area to be a
rectangle. One side of this rectangular area, typically
coinciding with a ridge or a tree line, is a mission
specified line segment This is in essence considered
to be an imaginary wall, and any movement behind it
is assumed to be hidden from the enemy. An RWA
IP hides in a small rectangular area (defined with a
width of 100 meters) behind this imaginary wall.
When relocating to a new hiding position, it uses the
NOE flight method to remain at a low altitude and
thus hidden behind the wall. The approximations of a
wall and a rectangular area for hiding are both based
on our previous work in the groundworld domain.
Groundwork! involved a simulated terrain with
random configurations of horizontal and vertical
walls, where an intelligent agent had to hide behind a
wall to escape from another agent pursuing it (Stobie
et al., 1992, Tambe and Rosenbloom, 1993).

4. Sharing and Reuse
RWA pilots' missions have some requirements —

such as, identifying enemy vehicles, firing missiles at
target vehicles and flying in formation—in common
with those of FWA pilots. These commonalities may
be exploited to cut down development time by
sharing or reusing both code and concepts from Soar-
based FWA pilots in the development of RWA pilots.
For instance, for an FWA IP, the code for firing a

70

missile involves three operators that orient its aircraft
towards its target, then push a fire button to actually
launch the missile, and then guide the missile (should
the missile require guidance) via radar (or other)
illumination of the target These three operators can
be reused in an RWA IP. At present, a Soar-based
RWA IP has 44 operators, with 25 (that is about
57%) reused in some form from the Soar-based FWA
IPs. The 19 new operators are those involved with
terrain reasoning tasks such as flying NOE, masking
and unmasking. This sharing is accomplished simply
by loading in appropriate operators from an FWA IP
code in an RWA IP.

Differences in concepts and terminology, however,
make some of the sharing problematic. For example,
for FWA pilots engaged in air-to-air missions, the
concept of launch-acceptability-region or LAR of a
missile combines both the range to a target and the
target aspect (angle between the target's current
heading and the straight line joining the target and the
FWA pilot's current locations). Thus, if a target is
heading towards the FWA pilot with a 0° target
aspect, the missile may be fired from a long range;
but the range is reduced substantially if the target has
a 180° target aspect In contrast for an RWA pilot,
the target aspect is irrelevant in calculating a
missile's LAR — the missile may be fired at an
equally long range irrespective of the target aspect
This creates a significant difference in the concept of
a missile LAR for an FWA and an RWA IP, making
the sharing of missile-LAR-related code difficult
There is an accompanying difference in the
terminology as well — the RWA pilot refers to the
missile LAR as a missile constraint

At least some of these apparent discrepancies in
the two IP's concepts — and potentially their
terminology—could be resolved if the agents reason
about the concepts from first principles. For instance,
agents could calculate a missile's LAR from first
principles, based on the relative velocities (speed and
direction) of the missile and the target Since an
FWA IP's target in air-to-air combat is a fighter jet
moving at a speed mat may be only a half to a fifth its
missile speed, its angle of movement (target aspect)
becomes an important factor in calculating LAR. In
particular, a target moving towards the FWA allows a
missile to be fired from a much longer range; while a
target that is moving away requires that the missile be
fired from a much closer range, so that the missile
may catch up with the target before expending all its
fuel. In contrast, an RWA IP's target is moving two
orders of magnitude slower than its missile — the
angle of the target's movement has a negligible
impact on the missile range. In other words, with the
first principles calculations, the target aspect
discrepancy automatically disappears. It will appear
important in FWA IP's calculations, and negligible in
an RWA IP's calculations.

While such calculations from first principles would
facilitate sharing, the calculations themselves may be
prohibitively expensive, and hinder real-time
performance. Soar's chunking (learning), could
potentially compile such first principles calculations
into new rules and alleviate this cost However, that
remains an issue for future work. We are currently
relying on a lower cost alternative, where a
problematic aspect of the agent code is rewritten
when in reuse.

5. Current Status and Future Work
As of February 1995, the RWA agents are capable

of performing a complete writ mission, which
involves flying to a battle area using one of the
possible flight methods, followed by masking,
unmasking, firing missiles at targets, and relocating
to a different masking location between missile
firings. We have run scenarios with up to four RWA
IPs executing the attrit mission.

At present the RWA IPs can fly in coordination, in
pairs. Extending mis work to enable coordinated
mission execution involving a platoon or a company
of RWA agents (with a platoon and a company
commander), is at the top of our agenda for future
work. Agents at higher echelons of command, such
as a company commander, may also bring up issues
of communication and mission planning, which we
have currently not addressed. Other issues for future
work, mentioned in previous sections, include
improvement in terrain reasoning for hiding, and in
code/concept sharing among Soar agents.

6. Acknowledgements
This research was supported under subcontract to

the University of Southern California Information
Sciences Institute from the University of Michigan,
as part of contract N00014-92-K-2015 from the
Advanced Systems Technology Office (ASTO) of the
Advanced Research Projects Agency (ARPA) and the
Naval Research Laboratory (NRL); and under
contract N66001-95-C-6013 from the Advanced
Systems Technology Office (ASTO) of the Advanced
Research Projects Agency (ARPA) and the Naval
Command and Ocean Surveillance Center, RDT&E
division (NRAD). Critical expertise and support has
been provided by David Sullivan of BMH Inc.

7. References
Bose,P.K.,Meng,A.C-C.,Rajnikanth,M. (1987)

Planning flight paths in dynamic situations with
incomplete knowledge. Proceedings of the SPIE
conference on Spatial reasoning and multi-sensor
fusion.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar,
J.M.F.,Ceranowicz,A.Z. (1993) ModSAF
behavior simulation and control. Proceedings of
the Conference on Computer Generated Forces
and Behavioral Representation.

71

Denton, R. V., and Froeberg, P. L. (1984)
Applications of Artificial Intelligence in
Automated Route Planning. Proceedings of SPIE
conference on applications of Artificial
Intelligence. , pp. 126-132.

Khatib,0. (1986) "Real-time obstacle avoidance for
manipulators and mobile robots". International
Journal of Robotics Research 5,1,90-98.

Laird, J. E., Johnson, W. L., Jones, R. M., Koss, F.,
Lehman, J. F., Nielsen, P. E., Rosenbloom, P. S.,
Rubinoff, R., Schwamb, K., Tambe, M., van
Lent, M, and Wray, R., (May, 1995) Simulated
Intelligent Forces for Air The Soar/IFOR project
1995. Proceedings of the Fifth Conference on
Computer Generated Forces and Behavioral
Representation.

Laird, J. E., Newell, A. and Rosenbloom, P. S.
(1987) "Soar An architecture for general
intelligence". Artificial Intelligence 33,1,1-64.

Lewis, R.L. (1993) An architecturally-based theory
of human sentence comprehension. Proceedings
of the Eleventh Annual Conference of the
Cognitive Science Society.

Longtin, M. J. (1994) Cover and concealment in
ModSAF. Proceedings of the Conference on
Computer Generated Forces and Behavioral
Representation.

Lozano-Perez,T. and Wesley M. A. (1979) "An
algorithm for planning collision-free paths among
polyhedral obstacles". Communications of the
ACM 22,10,560-570.

McDermott,D. and Davis, E. (1984) "Planning
routes through uncertain territory". Artificial
Intelligence 22,107-156.

McDermott, D., and Gelsey, A (1987) Terrain
analysis for tactical situation assessment
Proceedings of the SPIE conference on Spatial
reasoning and multi-sensor fusion.

Mitchell, J. S. B. (1990) Algorithmic approaches to
optimal route planning. Proceedings of die SPIE
conference on Mobile Robots.

Rao,T.M.,andArkin,R.C. (1989) 3D Path
planning for flying/crawing robots. Proceedings
of the SPIE conference on Mobile Robots.

Rosenbloom, P.S. and Aasman J. (August, 1990)
Knowledge level and inductive uses of chunking
(EBL). Proceedings of the National Conference
on Artificial Intelligence. , pp. 821-827.

Rosenbloom, P. S., Laird, J. E., Newell, A., and
McCarl, R. (1991) "A preliminary analysis of
the Soar architecture as a basis for general
intelligence". Artificial Intelligence 47,1-3 ,
289-325.

Rosenbloom, P., Johnson, W. L., Jones, R. M., Koss,
F., Laird, J. E., Lehman, J. F., Rubinoff, R.,
Schwamb, K., and Tambe, M. (1994) Intelligent
Automated Agents for Tactical Air Simulation: A
Progress Report. Proceedings of the Conference
on Computer Generated Forces and Behavioral

Representation.
Rubinoff, R, and Lehman, J. (1994) Natural

language processing in an IFOR pilot
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation.

Stobie, L, Tambe, M., and Rosenbloom, P.
(Novemeber, 1992) Flexible integration of path-
planning capabilities. Proceedings of the SPIE
conference on Mobile Robots.

Tambe, M., and Rosenbloom, P. (July, 1993) On the
Masking Effect Proceedings of the National
Conference on Artificial Intelligence.

Tambe, M., Johnson, W. L., Jones, R., Koss, F.,
Laird, J. E., Rosenbloom, P. S., and Schwamb, K.
(Spring 1995) "Intelligent agents for interactive
simulation environments". AI Magazine 16.

Tan,J. Flying NOE in ModSAF. Private
communication.

8. Authors* Biographies
Milind Tambe is a research computer scientist at

the Information Sciences Institute, University of
Southern California (USC) and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education in
computer science from the Birla Institute of
Technology and Science, India in 1986. He received
his Ph.D. in computer science from Carnegie Mellon
University in 1991. His interests are in the areas of
integrated AI systems, agent modeling, plan
recognition, and efficiency and scalability of AI
programs, especially rule-based systems.

Karl Schwamb is a Programmer Analyst on the
Soar Intelligent FORces project at the University of
Southern California's Information Sciences Institute.
He contributes to the maintenance of the
Soar/ModSAF interface software and the Tcl/Ik
interface to Soar. He received his M.S. in Computer
Science from George Washington University.

Paul S. Rosenbloom is an associate professor of
computer science at the University of Southern
California and the acting deputy director of the
Intelligent Systems Division at the Information
Sciences Institute. He received his B.S. degree in
mathematical sciences from Stanford University in
1976 and his M.S. and Ph.D. degrees in computer
science from Camegie-Mellon University in 1978
and 1983, respectively. His research centers on
integrated intelligent systems (in particular, Soar),
but also covers other areas such as machine learning,
production systems, planning, and cognitive
modeling. He is a Councillor and Fellow of the
AAAI and a past Chair of ACM SIGART.

72

